Real-time volumetric shadows for dynamic rendering

Alexandru Teodor Voicu Prof. Duncan F. Gillies

Contents

Introduction

Introduction

Why do we need volumetric shadows ?

No shadows

Volumetric shadows

Same story in real-life

No shadows (dyed blonder hair)

Volumetric shadows (natural blonde hair)

Offline implementation

- Successfully done by the film industry
 - ray tracing
 - photon mapping
- Not real-time
 - 3DS Max
 - Maya
 - Blender
 - Pixar's RenderMan®

Opacity Shadow Maps

Algorithm (Kim et al.) '01

- Geometry is rendered to texture for a predefined number of times
 - along the light's direction
 - setting the near and far clip planes

• Real-time due to hardware acceleration

Severe visual artifacts

• Points are presented in only one layer

Deep Opacity Maps

Algorithm (Yuksel et al.) '08

- Layers are aligned with the object's shape via a depth map
 - less layers produce better renderings

Still some visual artifacts

Bad ending position

Good ending position

- No information about where objects end
 - doesn't really work with multiple objects

Bounding Opacity Maps

Algorithm (me) '11

- Layers are aligned with the object's shape via two depth maps
- Follows the distribution of light in real-life
 - even less layers produce even better renderings

Visual artifacts

Linear split

Logarithmic split

Too few layers and bad splitting scheme

Splitting scheme

Linear splitting

- Good for sparse objects / bad for dense ones
 - Ighting changes throughout the entire object's length

Real-life photographs of sparse objects

Logarithmic splitting

- Good for dense objects / bad for sparse ones
 - lighting changes only at the beginning

Real-life photographs of dense objects

Hybrid splitting

- Linear interpolation between linear and logarithmic splitting
- Automatically choose the best ratio
 - consecutive layers are different
 - every new layer brings new information
- The layers are gray images
 - image processing problem
 - mutual information

Mutual information

- Two methods were tested
 - Sum of absolute differences
 - Cross-correlation coefficient

$$C = \frac{\sum_{x,y} (I_1(x,y) - \overline{I_1}(x,y)) (I_2(T(x,y)) - \overline{I_2}(T(x,y)))}{\sqrt{\sum_{x,y} (I_1(x,y) - \overline{I_1}(x,y))^2 \sum_{x,y} (I_2(T(x,y)) - \overline{I_2}(T(x,y)))^2}}$$

- Cross-correlation gives better results
 - takes standard deviation into account
 - normalized between [-1, 1]

Split ratio vs. Density

Split ratio vs. Number of layers

Results & Performance

FPS vs. Number of layers

Future work

To Do

- Different splitting function for each ray / region
 - splitting texture (another render pass)
- Compute split ratio in real-time (CPU bound now)
 - solved by using the GPU
- Find the optimal number of layers
 - easier to find the biggest number of layers that keeps the application real-time
- Extend to clouds and smoke
 - add support for volumetric rendering

Conclusions

Introduction **Opacity Shadow Maps Deep Opacity Maps Bounding Opacity Maps** Splitting scheme **Results & Performance** Future work

Conclusions

Q & A

Conclusions

- Self-shadows needed for realistic rendering
- Previous method do this in real-time, but suffer from visual artifacts
 - don't follow the light distribution from real-life
- New methods for approximating the light distribution are proposed
 - Bounding Opacity Maps
 - Hybrid Splitting
- Dyed blonde hair looks unnatural
 - doesn't cast volumetric shadows!

Q & A

Q & A

- Thank you for your attention
 - http://www.youtube.com/watch?v=JUrC7yv26eA
- Full source code
 - https://crystal.svn.sourceforge.net/svnroot/crystal/CS/br anches/soc2011/selfshadow/
- More about this project
 - http://volumetricshadows.wordpress.com/
- Contact details
 - alexandru.voicu10@imperial.ac.uk

• Q & A