

Imperial College London

Department of Computing

Real-time volumetric shadows for

dynamic rendering

by

Alexandru Teodor V.L. Voicu

Submitted in partial fulfilment of the requirements for the MSc Degree in

Computing Science / Visual Information Processing of Imperial College London

September 2011

Abstract

In order to produce realistic renderings for translucent objects, such as foliage or hair, self-

shadows have to be used.

The first method that succeeds in casting real-time self-shadows is the Opacity Shadow Maps

algorithm. However this method suffers from severe layering artifacts unless a large number

of opacity maps are used, but that causes the application to have only interactive and not real-

time performance.

Deep Opacity Maps solve the layering artifacts problem by aligning the opacity maps with the

shape of the geometry as seen from the light’s perspective. The downfall of this method is that

only information about the front shape is provided and because of this the algorithm cannot

work with multiple objects of various sizes.

The novel method proposed in this thesis, Bounding Opacity Maps, improve Deep Opacity

Maps by also giving information about the objects’ end position and shape. Furthermore an

adaptive splitting scheme is proposed in order to better position the opacity maps based on the

density of the objects in the scene.

Acknowledgements

First and foremost, I would like to thank my personal supervisor, Prof. Duncan F. Gillies, for

his continuous comments, advice and suggestions involving this thesis. Without his constant

guidance I would not have follow the interesting and innovative research path the project took

in its final steps.

I would also like to thank the Crystal Space open source community for giving me invaluable

insights regarding how their 3D open source render engine works. I personally thank my

Google Summer of Code 2011 mentor, Mike Gist, and Frank Richter.

Last but not least, I would like to thank the Computing Support Group within the Department

of Computing at Imperial College London for assigning me a work station when my personal

computer broke down and I could not work from home anymore.

Contents

1. Introduction .. 9

1.1 Offline implementations ... 10

1.2 Interactive implementations ... 10

2. Technical background .. 12

2.1 The render manager .. 13

2.2 Parallel Splits Shadow Maps .. 14

3. Opacity Shadow Maps ... 15

3.1 A first implementation .. 16

3.2 Limitations .. 17

3.3 Using all available texture channels ... 18

3.4 Multiple render targets .. 21

3.5 Percentage-closer filtering .. 22

4. Deep opacity maps ... 23

4.1 Limitations .. 24

4.2 Implementation details ... 26

5. Bounding opacity maps .. 27

5.1 Implementation details ... 30

5.2 Splitting scheme ... 31

5.2.1 Logarithmic splitting .. 32

5.2.2 Lookup textures ... 34

5.2.3 Hybrid split .. 34

5.2.4 Computing cross-correlation .. 40

5.3 Adding common lighting effects .. 42

5.4 Limitations .. 43

6. Results & Performance ... 44

6.1 Opacity Shadow Maps .. 44

6.2 Deep Opacity Maps .. 45

6.3 Bounding Opacity Maps ... 45

7. Future work .. 46

8. Conclusions .. 49

References .. 51

Appendix .. 54

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

9

1. Introduction

The problem of rendering real-time realistic hair has been a significant topic of research in

computer graphics for a long period of time, the first proposed solution going back to 1989.

Early approaches, such as those of Kajiya and Kay [KK89] or Marschner [MJC03],

implement hair rendering by using simple models that try to approximate the physical

phenomena that occurs when a ray of light intersects a hair strand. These methods are both

fast to compute, but they lack realistic rendering, because they do not take into account the

influence hair strands have upon other hair strands, which leads to self-shadowing (Figure

1.1).

Figure 1.1 Picture produced in 3DS Max. Blonde hair rendered without (left) and with self-shadows (right).

More recent methods include self-shadowing, which is done by volumetric shadows, a

technique that can be used to realistically render other dynamic translucent objects, such as

smoke, clouds or foliage, as well. Because this technique works with a variety of objects, not

just hair, it has been a popular research matter, a lot of improvements being documented,

since the first interactive implementation of volumetric shadows, in "Deep Shadow Maps"

[LV00].

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

10

1.1 Offline implementations

The first, and most realistic implementation of hair rendered with volumetric shadows was

done by the film industry years ago, but by using offline implementations.

Offline implementations produce highly realistic visuals at the cost of computational time,

and so they are used only by applications that do not require real-time performance, such as

those from the film industry: Maya, 3DS Max, Blender or RenderMan.

Volumetric shadows are usually implemented in these applications by making use of volume

rendering [L88], a technique that requires the input data to be organized in voxels. Therefore a

3D structured grid is computed for each translucent object, the size of a voxel in the grid

being determined by the required rendering quality, smaller voxels giving better visuals at

higher computational times.

Interactive implementations try to speed up volume rendering, by using hardware acceleration

techniques supported by almost all modern video cards, such as rendering to texture, 3D

texture or lookup textures.

1.2 Interactive implementations

The first interactive implementation of volumetric shadows was described in the paper "Deep

Shadow Maps" [LV00], and it only slightly improves on volume rendering. Instead of

rendering the scene using ray casting from the camera's point of view, a visibility function is

first computed (Figure 1.1.1). The visibility function stores information regarding the amount

of translucency each voxel has, as seen from the light's perspective. To find the alpha value of

each voxel a volume rendering approach is used, in which rays are cast from the light's

position and the change in transparency along each ray is stored in a texture, representing the

visibility function. The overall complexity of this method, O(NlogN) is determined by the

volume rendering part, which is implemented by first sorting the geometry according to the

distance from the light's position and after that computing, in linear time, the intersection of

each ray with the geometry.

Figure 1.1.1. Picture taken from [LV00]. The visibility function is shown in the lower part of each image for the

corresponding rays shoot from the camera and intersecting a central voxel.

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

11

A faster way of approximating volume rendering from the light's perspective, is using

"Opacity Shadow Maps" [KN01]. Instead of sorting the geometry, the scene is rendered to

texture multiple times (Figure 1.1.2), with different far clip values, and only the alpha value is

stored in the corresponding render textures. The overall complexity is thus O(NM), where M

is the number of textures used and N is the number of primitives to be rendered. Because

rendering to texture is done using hardware acceleration for a small value of M the

performance of Opacity Shadow Maps outperforms the one of Deep Shadow Maps, making it

almost real-time on modern computers. However, in order to achieve realistic visuals a

significant number of layers have to be used, so that the reference points give a good linear

interpolation of the visibility function, making the performance only interactive.

Figure 1.1.2. Picture taken from [KN01]. The opacity function, Ω(l), is computed for each pixel by using the

information provided by each layer l.

Along the years a significant number of papers have been written improving on these two

fundamental approaches of doing volumetric shadows.

Improvements of the way the visibility function is stored were proposed in "A Self-Shadow

Algorithm for Dynamic Hair using Density Clustering" [MKBR04] and, more recently in

"Fourier Opacity Mapping" [LB10]. The first approach uses clustering, k-means clustering in

particular [Llo82], to choose the most significant pivot points, i.e. the points that best

represent the geometry's changes in transparency. The second method approximates the

visibility function using Fourier series, successfully minimizing the overall error between the

approximation and the real function.

However, finding better ways of approximating the visibility function gives better visuals, but

it does not improve on the bottleneck of the algorithm, which is either the sorting, O(NlogN)

in Deep Shadow Maps, or the multiple renders to texture, O(NM) in opacity shadow maps. If

the geometry is already sorted, the multiple renders to texture, can be done in O(N+M) ~

O(N), by rendering only the geometry between two textures, or slices, and using additive

blending and a 3D texture to compute and store the rest of the pivot points. This means that a

fast sorting algorithm could be of benefit to both methods, a fact noticed by Eric Sintron and

Ulf Assarsson who proposed two GPU based sorting algorithms, one developed using CUDA

[CUDA07], "Fast Parallel GPU-Sorting Using a Hybrid Algorithm" [SA07] and one that uses

geometry shaders, "Real-Time Approximate Sorting for Self Shadowing and Transparency in

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

12

Hair Rendering" [SA08]. Even though the performance of their sorting methods are better

than the classic implementation of quick sort from C/C++ [QSORT], their algorithms rely on

state of the art hardware which is still not present on the average computer nowadays.

Approaches that do not require specific hardware, but improve sorting by taking into account

some particular properties of the hair geometry, have been proposed in "Rendering real-time

self-shadowed dynamic hair" [V10]. Although this approximate sorting has better time results

than the quick sort from C/C++, the structures used require at least 3 times more memory than

a normal rendering, which might not necessarily be available in a 3D rendering engine.

Nevertheless, the methods that have the best ratio between performance and visuals are the

ones that try to minimize the number of layers used. Such an approach is presented in "Deep

Opacity Maps" [YK08] where the opacity maps are aligned with the shape of the objects from

the scene as seen from the light’s perspective. However, because only information about the

objects’ front shape is given and linear interpolation is used, sometimes the number of layers

originally proposed by this method produces visual artifacts.

2. Technical background

In order to develop an easy to maintain and to improve volumetric shadow implementation,

writing a render manager in a modern game engine seemed the best solution. Because full

access to the source code was needed in order to develop such a plugin, an Open Source

Project, or Free Software project, freely available under the GNU Lesser General Public

License (GNU LGPL) was chosen.

Crystal Space [CS07] is a project operating under the GNU Lesser licence, already at version

2.1_001, so the code, the available manual [CSM08] and API [CSD08], are at a mature

development stage. The full source code for this final project, with all its commits, can be

found online at its own SVN branch [CS11].

Crystal Space is a portable modular 3D SDK, and although it is mainly used for building

different types of video applications and games, it can also be used for project that do not

involve 3D content, but need a portable platform to develop C/C++ code. The project is

written to run under a wide variety of hardware and software platforms, currently the

following operating system being supported:

 Microsoft® Windows (9x/NT/ME/2000/XP)

 Unix® like Operating Systems (GNU Linux®, FreeBSD®, etc.)

 Apple® Mac OS® X

One of the most important facts about Crystal Space is that in order to achieve a high degree

of modularity, all packages of components and libraries are built as plugins. Plugins have the

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

13

advantage that they are defined using just an interface and the implementation is hidden from

the common user and can be easily updated at any time. Using such plugin libraries is also

useful because they can be registered, loaded and queried only when and if needed.

Here is a list of features available in Crystal Space, also used by the render manager:

 Geometric utility library, covering a variety of mathematical notions, such as 2D and

3D vectors, matrices, transforms and quaternions.

 General utility library with template arrays, smart pointers, hash maps, object registry,

plug-in manager or configuration files.

 Shared Class Facility SCF, which makes the separation between the interface and the

implementation and allows dynamically loadable modules.

 Virtual file system and transparent support for ZIP files, allowing easy access to files

on cross-platforms.

 Event system.

 Numerous types of mesh objects, of which only the most common used, genmesh, is

currently supported by the new render manager.

 Native widowing system using CEGUI, used for the graphical user interface.

 Cross-platform hardware rendering using OpenGL, or a NULL renderer for

applications like game servers.

 Advanced material support, including CG shaders and textures assigned to custom

created materials.

2.1 The render manager

The render manager is a plugin which controls the rendering loop in Crystal Space. It can also

control various properties, such as post-processing effects, anti-aliasing, z-buffer test or the

size of the rendering textures.

The main steps of a render manager in Crystal Space are:

 Get the geometry in the sector to be render.

 Do the visibility culling, based on the camera's frustum.

 Sort the mesh list based on the Z coordinate and assign in-context per-mesh indices,

needed only when translucent objects are to be displayed.

 Load and setup the shader variables arrays for each mesh.

However, these are only the main steps for the default unshadowed render manager, steps like

rendering to textures, not being included. The render managers available at this moment in

Crystal Space are: unshadowed, deferred [H04] and shadowed using parallel split shadow

maps [ZFSXS06]. The latter is the most similar render manager to the one that has been

recently added for casting volumetric shadows.

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

14

2.2 Parallel Splits Shadow Maps

Parallel split shadow maps [ZFSXS06], or cascaded shadow maps [D07], is a technique that

splits the view frustum (Figure 2.2.1) into multiple depth layers in order to remove some of

the visual artifacts common to the original shadows map method [SKWFH92].

Figure 2.2.1. Picture taken from [ZFSXS06]. Splitting the viewing frustum, V, into m+1 planes, C0...m, which are

later normalized to the [0, 1] interval, S0...m.

Instead of generating just one high resolution shadow map, the multiple depth layers make it

possible to create multiple shadow maps at a smaller resolution and containing just a part of

the scene.

Parallel splits shadow maps were already implemented in Crystal Space at the time this

project was proposed, and the corresponding render manager contained a couple of additional

features from the default render manager. These features are related to rendering to texture

multiple times and splitting the view frustum into multiple depth layers, both also needed for

the opacity shadow maps implementation. They are achieved by doing the following steps:

 Calculate the split distances, lights' and objects' frustums.

 Set up a new render view for each split and test the intersection of the lights' frustum

with the objects' frustums.

 Render to texture for each render view using a depth render manager, without

shadows, light or color information, but just storing the distance from the light's

position to the objects' position.

 Load and setup the shader variables arrays that contain shadow information.

 Render the scene using a slightly modified version of the default render manager,

which casts shadows when the distance from the object to the light is bigger than the

distance in the rendering texture of the corresponding projected point.

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

15

3. Opacity Shadow Maps

Opacity shadow maps were introduced in Tae-Yong Kim and Ulrich Neumann's paper,

"Opacity Shadow Maps", from 2001 [KN01] and it was the first method of obtaining

volumetric shadows that had real-time performance at low level of details.

In this method volumetric shadows are obtained by approximating the light transmittance

inside a complex volume with a set of planar opacity maps. A volume represented by standard

primitives (points, lines and polygons) is sliced and rendered, using graphics hardware, to

each opacity map that stores alpha values rather than depth values. The alpha values are

sampled in the maps enclosing each primitive point and interpolated for shadow computation

[KN01].

Opacity shadow maps were not already implemented in Crystal Space at the time this project

was proposed, so such an implementation had to be done as a starting point for the novel

algorithm proposed later on in this thesis.

The main modifications done to the parallel split shadow maps implementation were:

 The use of a different split scheme, a linear one as opposed to the existing logarithmic

one.

 Create opacity maps instead of depth maps, which involved both rendering the scene

to texture based on alpha and not on depth, and using this information as opacity

rather than occlusion when doing the final pass from the light's perspective. As an

optimization, four different layers were rendered to a single texture using a 32-bit

channel for each.

The opacity shadow map render manger has the following steps:

 Calculate the split distances, lights' and objects' frustums.

 Set up a new render view for each split and test the intersection of the lights' frustum

with the objects' frustums.

 Render to texture for each render view using an opacity render manager, without

shadows, light or color information and without sorting, but just storing the additive

alpha component from objects.

 Load and setup the shader variables arrays that contain shadow information.

 Render the scene using a modified version of the default render manager, which

renders shadows according to the information stored in the opacity shadow maps: if a

point to be rendered is denser from the light's perspective then it will be rendered

darker in the final scene.

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

16

3.1 A first implementation

The first implementation of the opacity shadow map render manager consisted of splitting the

scene into a predefined number of regions, using linear interpolation between the first and the

last vertex belonging to any translucent object, i.e. having the alpha rendering priority in

Crystal Space.

The linear interpolation scheme (Figure 3.1.1.a) was chosen only for its simplicity, but it

might not perform very well when having multiple translucent objects in the scene that are far

apart, because many opacity maps would not split through any object and contain the same

information. Other more advanced schemes are proposed in [KN01]: adaptive slicing when

the structure of the objects is known beforehand (Figure 3.1.1.b) and if regions farther away

from the light's position have decreasing variations in transparency, a non-linear slicing

method could be used (Figure 3.1.1.c).

Figure 3.1.1.Picture from [KN01] – Various slicing schemes: uniform linear slicing (a), density based slicing (b)

and non-uniform slicing (c).

In order to use the maps at their full capacity, i.e. have the objects rendered from the lights

point of view cropped to a 2D bonding box (Figure 3.1.2.b and Figure 3.1.2.d), the frustums

were build as in Parallel Split Shadow Maps [ZFSXS06]. Two axis aligned bounding boxes

were used to compute the crop matrix: one for the objects that cast shadows and one for those

that receive them. The crop matrix is then computed by constructing an axis aligned bonding

box containing both the receivers and casters. The final light's view-projection transformation

matrix for the current split is lightViewMatrix * lightProjMatrix * cropMatrix

[ZSN07].

Figure 3.1.2. Picture from Crystal Space. Different opacity shadow maps. Scene rendered without using the

whole capacity of the maps, when light is at distance 10 (a) and 20 (c). Scene rendered using bounding boxes for

cropping when light is at distance 10 (b) and 20 (d).

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

17

After setting up the light's view-projection transformation matrix a new render view is created

and associated to a context which renders to texture the data contained in the view-projection

matrix, building an opacity shadow map. Then these maps are given to a later rendering pass

which computes the final shadow by finding for each point the neighbouring maps and then

linearly interpolating the values obtained by projecting the point on these two maps.

3.2 Limitations

The limitations of the first implementation of opacity shadow maps lie in the small number of

layers that are created and passed to the final shader, due to the following two causes.

Firstly, even though a map stores information only in one channel, a texture with 4 channels is

created for each such map, resulting in using 4 times more memory than actually required.

Secondly, the maps are passed to the final shader as an array of textures, which can only be

indexed by constants and not by variables, resulting in the registration of the whole textures

array, even though only two maps are used for a certain point. Furthermore, hardware

limitations do not allow registering more than 16 such textures on the video card on which the

implementation was developed and tested, NVIDIA GeForce GT 335M.

Because only such a small number of maps can be used, this first implementation suffers from

severe visual artifacts (Figure 3.2.1). These artifacts are due to the fact that some points are

present in one of the neighbouring maps, but not the other.

Figure 3.2.1 Picture from Crystal Space. Due to the small number of opacity shadow maps diagonal artifacts can

be seen.

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

18

A possible solution for removing the layering artifacts is increasing the number of opacity

shadow maps, as show in Figure 3.2.2 from [YK08].

Figure 3.2.2 Picture from [YK08]. Removing Opacity Shadow Maps’ visual artifacts by increasing the number

of layers from 16 (a) to 128 (b).

Various approaches that try to minimize both the number of textures created and passed to the

final shader and the time it takes to compute them have been added to this first

implementation.

3.3 Using all available texture channels

A first optimization consisted of reducing the number of textures used, by storing information

in the three color channels as well as the alpha channel. OpenGL uses blending functions

[OGL97] in order to compute the final value of a channel, using the glBlendFunc:

void glBlendFunc(GLenum sfactor, GLenum dfactor);

having the output definied as:

R = sfactor * Rs + dfactor * Rd;

G = sfactor * Gs + dfactor * Gd;

B = sfactor * Bs + dfactor * Bd;

where (Rs, Gs, Bs) is the source color (object being drawn), and (Rd, Gd, Bd) is the

destination color (color already in the framebuffer).

The possible values for sfactor and dfactor are presented in Table 3.3.1.

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

19

Factor Name Computed factor
GL_ZERO 0

GL_ONE 1

GL_SRC_ALPHA As

GL_ONE_MINUS_SRC_ALPHA 1 - As

GL_DST_ALPHA Ad

GL_ONE_MINUS_DST_ALPHA 1 - Ad

GL_CONSTANT_ALPHA Ac

GL_ONE_MINUS_CONSTANT_ALPHA 1 - Ac

GL_SRC_COLOR (Rs, Gs, Bs)

GL_ONE_MINUS_SRC_COLOR (1 - Rs, 1 - Gs, 1 - Bs)

GL_DST_COLOR (Rd, Gd, Bd)

GL_ONE_MINUS_DST_COLOR (1 - Rd, 1 - Gd, 1 - Bd)

GL_CONSTANT_COLOR (Rc, Gc, Bc)

GL_ONE_MINUS_CONSTANT_COLOR (1 - Rc, 1 - Gc, 1 - Bc)

GL_SRC_ALPHA_SATURATE min(As, 1 - Ad)

Table 3.3.1 List of possible values for source and destination factors.

In Crystal Space the blending function is called indirectly by using various mixmodes on

different meshes or shaders (Table 3.3.2).

Name Definition Formula
CS_FX_MULTIPLY CS_MIXMODE_BLEND(DSTCOLOR,

ZERO)

SRC*DST

CS_FX_ADD CS_MIXMODE_BLEND(ONE, ONE) SRC+DST

CS_FX_ALPHA

CS_MIXMODE_BLEND(SRCALPHA,

SRCALPHA_INV) |

CS_MIXMODE_BLEND_ALPHA(ONE,

SRCALPHA_INV)

srcAlpha*SRC + (1-

srcAlpha)*DST

CS_FX_TRANSPARENT CS_MIXMODE_BLEND(ZERO, ONE) DST

CS_FX_DESTALPHAADD CS_MIXMODE_BLEND(DSTALPHA,

ONE)

(dstalpha)*SRC + DST

CS_FX_SRCALPHAADD CS_MIXMODE_BLEND(SRCALPHA,

ONE)

(srcalpha)*SRC + DST

CS_FX_PREMULTALPHA

CS_MIXMODE_BLEND(ONE,

SRCALPHA_INV) |

CS_MIXMODE_BLEND_ALPHA(ONE,

SRCALPHA_INV)

SRC + DST*(1-srcalpha)

Table 3.3.2 List of possible mixmodes' values in Crystal Space.

At first the CS_FX_ALPHA mode was used, where the color channels are computed in the most

common way, srcAlpha*SRC + (1-srcAlpha)*DST, and the alpha channel is SRC +

DST*(1-srcalpha). The alpha channel gives the correct result for the opacity function,

because for alpha we have SRC = srcalpha, thus having the following result in the

framebuffer: srcalpha + DST*(1-srcalpha). This result can also be obtained for the color

channels either by setting SRC = 1 or by using CS_FX_PREMULTALPHA with SRC = srcalpha.

Even though these two approaches manage to store the same information in each texture

channel, they cannot be computed independently, because one channel cannot be set

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

20

transparent (srcAlpha = 1) without influencing the alpha channel, which would be SRC +

DST*(1-srcalpha) = 1 + DST.

The only way in which one channel can store a value in the framebuffer and all others be set

to transparent is by using additive blending, CS_FX_ADD, as described in [ND05].

The problem when using CS_FX_ADD is that there is a linear increase, SRC+DST, instead of a

logarithmic one SRC + DST*(1-srcalpha), but that can be fixed by using the exponential

function when computing the final opacity [ND05]:

half shadow = exp(-density);

The four channels are computed in one pass of one shader by calculating the distance from the

light's position, which is actually the camera position when rendering from the light's

perspective, to each point to be displayed. The red channel contains opacity information only

about the first quarter of geometry, the blue channel about half of the geometry, the green

three quarters and the alpha contains opacity data for all available geometry (Appendix -

Section 1):

color = color * float4(index < 1, index < 2, index < 3, 1);

However this shader only receives a part of the geometry in one call, obtained by setting the

near and far z-plane to that particular split, which will be further divided into four parts inside

the shader.

Because the geometry is split using both the near and far z-plane, the render texture obtained

contains information only about that particularly part of the geometry, and in order to

compute the final opacity at a certain point the values from all precedent render textures has

to be added (Appendix - Section 2):

for (int j = 0 ; j < prevIndex ; j ++)

previousMap += getMapValue(4 * (j + 1) - 1, prevPos);

Just by using all four channels the number of available opacity shadow maps increased by 4,

being in a 4:1 ratio with the number of available textures, which is 16 due to the hardware

limitation mentioned in Section 3.2.

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

21

Figure 3.3.1 Picture from Crystal Space. Grass rendered using 16 render textures, yielding 64 opacity shadow

maps. The visual artifacts are less visible than in Figure 3.2.1.

3.4 Multiple render targets

Multiple render targets [MRT04] is a feature of modern GPUs that allows a single pass of a

shader to output information to more than one location (COLOR0), making it possible to render

images to multiple render target textures at once. They were first introduced in the API of

OpenGL 2.0 and Direct3D 9, but video cards supporting this feature appeared years later.

The benefit of introducing this feature to the opacity shadow maps algorithm is that even

more opacity maps can be generated in a single pass of a single shader, similar to how 4 maps

were generated in a single pass when using all available channels, in Section 3.3.

The only disadvantage of MRTs is that different GPUs support a different number of render

targets and the code written on the GPU has to avoid calling or writing to invalid memory

zones. For instance older video cards that do not support Direct3D 9 or OpenGL 2.0 have the

number of MRTs set to 1, those that do support it have it set to 4 and the newer one that are

capable of Direct3D 10 and OpenGL 3.0 support up to 8 MRTs [MRT04].

Because of this, three shaders are automatically generated to access and write to 1, 4 or 8

MRT depending on the available number of MRT on the hardware the application is run. The

way in which a rendering texture is selected is very similar to the way one of the four

channels is selected in Section 3.1.2: by calculating the distance from the light's position to

each point to be displayed. The closest vertices go to the first rendering target and further

points are stored in the following render targets if available (Appendix - Section 3).

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

22

Thus for video cards supporting 8 MRTs one pass can generated up to 32 opacity maps in one

go, giving a considerable speed-up, because 8 times less rendering contexts have to be

created.

3.5 Percentage-closer filtering

The same techniques used to improve shadow maps can be applied to opacity shadow maps

with good results, as well. This can lead to a significant speed-up because lower resolution

maps can be used without introducing any significant visual artifacts.

Because shadow map textures cannot be prefiltered to remove aliasing, like normal textures,

multiple shadow map comparisons have to be made per pixel and averaged together, by a

technique called percentage-closer filtering (PCF) [RSC87].

Although the original PCF algorithm as described in [RSC87] sampled the region to be

shaded stochastically (randomly), by constructing a four-sided micropolygon (Figure 3.5.1.a),

newer implementations [BP04] use a 4x4 texel sampler region (Figure 3.5.1.b).

Figure 3. 5.1 Picture taken from [BP04]. Choosing a four-sided micropolygon (a) or a 4x4 texel region (b) as

neighbourhood.

A brute force method can be used to compute the 4x4 texel region average with good

performance, mainly because most texture fetches are in the texture cache being close to one

another [BP04] (Appendix - Section 4).

Other ways of improving the opacity maps, such as point splatting [KN01] or variance

shadow maps [DL06] have been taken into account, but because they do not benefit from

native hardware acceleration they tend to be slow, so the PCF method was preferred.

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

23

4. Deep opacity maps

Instead of trying to remove the visual artifacts of the Opacity Shadow Map method by

increasing the number of maps, and at the same time decreasing the size of an artifact until it

becomes too small to be noticed, Deep Opacity Maps [YK08] try to solve the problem by

aligning the opacity maps with the hair geometry (Figure 4.1).

Figure 4.1 Picture taken from [YK08]. Opacity Shadow Maps with 16 layers (a), with 128 layers (b) and Deep

Opacity Maps with only 4 layers (c).

The deep opacity maps method combines shadow mapping [SKWFH92] and opacity shadow

maps [KN01] to give a better distribution of the opacity layers. In a first render pass the scene

is drawn from the light's perspective and only information about depth is stored, by a regular

shadow mapping technique. A second rendering pass constructs the opacity maps by doing a

linear splitting, similar to the Opacity Shadow Map [KN01] technique, but which uses an

offset equal to the value read from the shadow map generated in the previous pass (Figure

4.2).

Figure 4.2 Picture taken from [YK08]. Opacity Shadow Maps use linear interpolation (a), while Deep Opacity

Maps (b) also use an offset read from the shadow map, so that they conform to the shape of the model.

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

24

Because the layer distribution in deep opacity maps guarantees that the direct illumination

coming from the light source without being shadowed is captured correctly, by using the

shadow map offset, a smaller number of opacity maps can be used to generate high quality

shadows [YK08].

The biggest advantage of this new way of splitting is that it can still be done using common

hardware and technologies, because it only involves reading and writing to textures inside a

fragment shader. The hair volume can be divided into 𝐾 layers such that each layer lies from

𝑧0 + 𝑑𝑘−1 to 𝑧0 + 𝑑𝑘 , where 𝑧0 is the depth read from the shadow map, 𝑑0 = 0, 𝑑𝑘−1 < 𝑑𝑘

and 1 ≤ 𝑘 ≤ 𝐾. Furthermore the layer size does not have to be the same, i.e. 𝑑𝑘 − 𝑑𝑘−1 ≠

𝑑𝑘−1 − 𝑑𝑘−2, and even though the same 𝑑𝑘values are used for each pixel, 𝑧0 varies by pixel,

so the layers take the shape of the geometry model in a linear splitting distribution.

Figure 4.3 shows how Deep Opacity Maps remove layering artifacts as compared to the

Opacity Shadow Maps on the translucent grass model from Crystal Space.

Figure 4.3 Picture from Crystal Space. Opacity Shadow Maps with 64 layers (a) and layering artifact free Deep

Opacity Maps with 16 layers (b).

4.1 Limitations

Even though Deep Opacity Maps do not require as many layers as Opacity Shadow Maps to

render high quality shadows, just 3 layers, the number typically used in [YK08], is not quite

enough for cluster geometry (Figure 4.1.1).

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

25

Figure 4.1.1 Picture from [YK08]. Only 3 layers at a low resolution (a) do not produce high quality shadows, so

either the number of layers has to be increased (b) or the map's resolution (c).

Because, when supported, multiple render targets [MRT04] represent a fast way of generating

up to 32 opacity maps (Section 3.4), a basic scheme for controlling the visual quality of

shadows, while roughly maintaining the same performance, has been developed for the

current implementation.

The maximum number of supported multiple render targets is used to generate as many layers

as possible in a single rendering pass. Thus newer hardware gives higher quality shadows,

while older video cards, which only use one render target, and still one rendering pass,

produce 4 layers and lower quality shadows. However, the performance tends to stay the same

because the number of rendering passes used to generate the Deep Opacity Maps remains the

same.

Moreover, if the scene to be rendered does not actually require more than a few layers, there

is no geometry clustering, the number of multiple render targets used can be forced to a

certain value via the scene configuration file.

Another problem with Deep Opacity Maps is that although the initial offset for linear splitting

is clearly specified for every point, there is no information regarding where the splitting

should stop. This can either lead to visual artifacts or to an inefficient usage of the opacity

maps. The solution preferred in [YK08], that the last layer will contain all the remaining

points, can lead to visual artifacts, similar to those from clustering (Figure 4.1.1), if the last

layer begins too early (Figure 4.1.2.b). On the other hand if the splitting is chosen so that the

last layer lies beyond the hair volume, poor usage of the opacity maps will occur, because not

only the last layer would not contain any information at all, but the rest of the layers will

contain information only in a small proportion (Figure 4.1.2.c). A solution to this problem is

proposed further on in the current thesis (Section 5).

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

26

Figure 4.1.2 Modified picture from [YK08]. Standard linear splitting (a), splitting that ends too early (b) and

splitting that contains all the hair volume (c). Choosing the end splitting points too near (b) results in the last

layer having a lot of information, which produces visual artifacts. Choosing the splitting point too far (c) leads to

a big part of the layers not containing any useful information (the green hashed region).

4.2 Implementation details

Even though the implementation of Deep Opacity Maps, required mainly adding another

rendering pass to compute the shadow map and making sure the second rendering pass, which

generates the layers, is called only one time, some other small optimizations were done in

order to increase performance.

One significant benefit of choosing a linear splitting scheme is that the exact position of the

splitting points does not need to be stored explicitly, which would involve a costly transfer of

an array from the main memory to the video memory. Furthermore, if the position of the

splitting points can be determined in constant time, using linear interpolation, this means that

any point within the splitting interval can be attributed to a corresponding splitting point, and

thus layer, in constant time as well.

Because only one rendering pass is used when generating the layers the whole hair volume is

passed to the shader. Therefore each opacity map can be efficiently created so that it contains

information about every point until the splitting point and not only points which reside

between the previous splitting point and the current one. This is done by adding the current

rendered point, from the second rendering pass, to all previous rendering targets and not just

the one determined by the splitting point (Appendix - Section 5). The advantage of this is that

when computing the final opacity value for a certain point all the information needed is stored

in just one opacity map and not divided among several, like in the case of Opacity Shadow

Maps, so no additional texture lookups have to be done for previous layers.

A regular depth map couldn't be used for the first rendering pass due to the fact that this map

needs to be accessed like a regular texture, not a shadow map, which is impossible to do on a

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

27

depth map [tex2D]. Instead the depth information was written to a single 32 bit channel of a

128 RGBA texture, which was accurate enough for doing the linear interpolation for deep

opacity maps without noticeable visual artifacts.

As a consequence of the fact that neither searching for the linear splitting scheme, nor adding

information from previous layers is required, no for statements have been used in the vertex

or fragment programs, which made the code optimal and compatible with older hardware as

well. In order to further increase performance, all conditional branches were avoided, and

variables having values based on conditions were used instead.

5. Bounding opacity maps

Because Deep Opacity Maps do not give any information about the end splitting points either

visual artifacts or a poor usage of the opacity maps can occurs, as described in Section 4.1.

Furthermore, if the layers are built by only taking into account the depth map, i.e. the shape of

the object as seen from the light's perspective, they only follow the initial light distribution, as

it enters the object. For instance, the layers obtained using Deep Opacity Maps would follow

the distribution shown in Figure 5.1.b, which does not correspond to the way in which the

light distribution occurs in the real world Figure 5.1.c.

Figure 5.1 A translucent full sphere as seen in real-life (a), the distribution of layers when using Deep Opacity

Maps (b) and the way the light is distributed in real-life (c).

Moreover, the example illustrated in Figure 5.1 is not a particular case, the light distribution

following the shape of the object for other translucent real world objects, as can be seen in

Figure 5.2 and Figure 5.3.

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

28

Figure 5.2 Real-life lighting of blonde hair (a) and the corresponding layers and light distribution (b). It can be

observed that the layers and the light distribution follow the shape of the object.

By computing an extra depth map, in which depth information about the furthest away points

is given, instead of the closest ones, the limitation of Deep Opacity Maps regarding the lack

of information for the end splitting points is solved, and more important the layers follow the

light's distribution in real-life.

The novel solution proposed in the current thesis is named Bounding Opacity Maps and

achieves a layering following the light distribution in real-life by interpolating the values from

the two depth maps when choosing the splitting points.

Because the same technologies are used as in Deep Opacity Maps, the splitting can still be

done using common hardware and technologies and it still benefits of hardware acceleration.

Figure 5.3 Real-life lighting of a tree (a) and the corresponding layers and light distribution (b). It can be

observed that the layers and the light distribution follow the shape of the object.

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

29

The geometry can be divided into 𝐾 layers such that each layer lies from 𝑧0 + 𝑑𝑘−1 to

𝑧0 + 𝑑𝑘 , where 𝑧0 is the depth read from the first depth map, 𝑑0 = 0, 𝑑𝑘−1 < 𝑑𝑘 , 1 ≤ 𝑘 ≤ 𝐾

and 𝑑𝐾 = 𝑧1, where 𝑧1 is the depth read from the second depth map. Furthermore, the layer

size is not the same for different zones in a layer because the difference between 𝑧0 and 𝑧1 is

not constant. As part of the first implementation the interpolation between 𝑧0 and 𝑧1 was a

linear one, meaning that 𝑑𝑘 − 𝑑𝑘−1 = 𝑑𝑘−1 − 𝑑𝑘−2, but other splitting schemes can be used

as well, as shown in Section 5.2.

1. init:

2. geometry := load_scene('scene.txt')

3. render_loop:

4. start_depth_map := render_pass(geometry)

5. end_depth_map := render_pass(geometry)

6. render_textures := render_pass(start_depth_map, end_depth_map,

geometry)

7. render_scene(render_textures, start_depth_map, end_depth_map,

geometry)

Algorithm 5.1 A basic algorithm for Bounding Opacity Maps. The only difference from Deep Opacity Maps is

line 5 in which the end splitting points are computed. There are a total of three render passes that compute the

start splitting points (line 4), the end splitting points (line 5) and the opacity layers (line 6). The information

provided by these render passes is used to render the final scene on line 7.

Although the Bounding Opacity Maps algorithm (Algorithm 5.1) is only slightly different

from the Deep Opacity Maps one, both the difference in splitting (Figure 5.4) and in

rendering (Figure 5.5) are quite substantial.

Figure 5.4 Difference in splitting between Deep Opacity Maps (a) and Bounding Opacity Maps (b) when using

16 layers - first layer corresponds to light green and the last layer to black. It can be seen that because the end

splitting points are not specified in Deep Opacity Maps the layers do not cover the whole length of the object

(the final color is not black as in (b)).

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

30

Figure 5.5 Difference in rendering between Deep Opacity Maps (a) and Bounding Opacity Maps (b) when using

16 layers. Because Deep Opacity Maps do not specify the end splitting points some grass strands (from the red

circle), corresponding to the last layer, are given false shadow information.

5.1 Implementation details

The implementation of Bounding Opacity Maps is very similar to the one of Deep Opacity

Maps, the main difference is that two depth maps, instead of just one, are computed. In order

to compute the second depth map another rendering pass was added, but the time lost with

this extra pass was recovered by the fact that even fewer layers than in Deep Opacity Maps

can be used without losing any details. The correct visual appearance is guaranteed even with

just a few layers by the fact that the maps now follow the light's distribution in real-life.

As stated in Section 5 the second depth map contains information about the depth calculated

from the light's position where objects end. In OpenGL this can be achieved directly by

calling the glDepthFunc function with GL_GREATER / GL_GEQUAL instead of GL_LESS

/ GL_LEQUAL [OGL97]. This sets the zbuffer with new data (depth value and color

information) only if the incoming depth is greater / greater or equal than the stored depth

value. However because this way of setting the zbuffer is quite specific to OpenGL and there

were not any straight forward ways of copying this behaviour in Crystal Space, another more

general method was used instead.

This general way is a mathematical solution and it consists of swapping the value of the near

plane with the one of the far plane when computing the projection matrix from the light's

perspective in the second rendering pass. By doing this the direction of the Z axis is reverted,

so every object in the scene looks as if it were mirrored (Figure 5.1.1). The useful fact about

the mirrored scene is that the closest points from the light correspond to the farthest points

from the light from the mirrored scene, and this is valid both ways. Due to this property the

same code from the first rendering pass in Deep Opacity Maps, which computed the depth of

the points closest to the light's position, could be used to compute the furthest points from the

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

31

light's position in the second rendering pass from Bounding Opacity Maps. As a side note

OpenGL has a specific easy way of swapping the near and far values by calling the function

glDepthRange with 1 for the near value and 0 for the far one: "It is not necessary that

nearVal be less than farVal. Reverse mappings such as nearVal=1, and farVal=0 are

acceptable" [OGL97].

Figure 5.1.1 A scene where the light is at the origin and the light's direction corresponds to the positive Z

direction (a) and its corresponding mirrored scene (b).

The fact that both the start and the end position of objects in the scene are known, via the two

depth maps, allows finding a precise position of the splitting points by doing an interpolation

between the values stored in the depth maps (Appendix - Section 6).

5.2 Splitting scheme

Even though the most common splitting scheme is the linear one, the light distribution does

not necessarily follow linear interpolation. If we were to look at the light's distribution on

real-world translucent objects such as clouds, trees or hair we can observe that for a uniform

shape and a constant, high alpha value the lighting caused by self-shadowing changes only at

the very beginning of the object (Figure 5.2.1).

Therefore depending on the density of the geometry or on the amount of translucency an

object has, new shadow information may appear or not onto the next layer. In certain cases,

like the one described above, only the first few layers have different information (Figure

5.2.2), so a linear distribution of the layers is not a good option. A distribution that has

multiple layers near the start splitting position, i.e. at the beginning at the object, and fewer as

the layer position reaches the end splitting position would give better results.

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

32

Figure 5.2.1 Real-world photographs of clouds (a) and bushes (b). It can be observed that for these objects the

lighting only changes at the very beginning of the object.

Figure 5.2.2 Layers obtained using linear splitting on the grass scene. The last four layers contain almost the

same information.

5.2.1 Logarithmic splitting

The logarithmic distribution has a slower increase rate and therefore produces a splitting that

has a higher density of layers at the beginning of the object (Figure 5.2.3). And because there

are more layers at the beginning of the object, fewer layers contain the same information

(Figure 5.2.4). Obtaining layers that have different shadow information prevents artifacts like

the ones shown in Figure 5.2.5.

Figure 5.2.3 Comparison between linear and logarithmic distributions. Linear increase, blue, versus logarithmic

increase, green (a), linear split (b) and logarithmic split (c).

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

33

Figure 5.2.4 Layers obtained using logarithmic splitting on the grass scene. Every layer adds new shadow

information, i.e. is different from the previous one.

Figure 5.2.5 Picture from Crystal Space. Difference in rendering when splitting using linear splitting (a) and

logarithmic splitting (b). Linear splitting (a) produces incorrect self-shadows because most of the layers contain

the same information (Figure 5.2.2).

One disadvantage of using a non-linear splitting scheme is that the splitting positions cannot

be computed without a lot of arithmetical instructions. This is caused by the fact that the range

of the object is given in local coordinates from 0 to 1, where 0 corresponds to the beginning of

the geometry and 1 to the end of it.

Even though the interval [0, 1] could be used directly for linear interpolation, it is not a proper

input interval for the logarithmic function, because the output interval would cover an infinite

range from [-∞, 0] and wouldn't have the distribution shown in Figure 5.2.3.a. In order to

obtain such a distribution the interval has to be converted first to a positive interval greater

than 1, which covers a bigger range of values, say [1, N]. After the logarithmic function is

applied another interval is output [0, log(N)], which has to be converted to [0, 1] once again.

Therefore converting between intervals in the case of logarithmic splitting requires

significantly more arithmetical instructions than linear splitting which only requires a division

for finding a splitting position. However, this conversion can be done automatically if we use

lookup textures [SL04].

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

34

5.2.2 Lookup textures

Lookup textures are usually RGBA 1D, 2D or 3D textures, in which a function having the

[0, 1] input and output interval is encoded. For instance the logarithmic function is encoded

by first converting the [0, 1] interval to [1, textureSize - 1], afterwards applying the

logarithmic function which yields the [0, log(textureSize)] interval, which is finally converted

to [0, textureSize - 1] (Appendix - Section 7). Because the texture's size is usually a power of

2, due to compatibility reasons [CW04], the logarithmic function used was log2.

The major advantage of using this technique is that the lookup texture is computed only once

during the initialization stage, and afterwards it is used instead of the numerous arithmetic

operations needed to convert the input and the output interval as well as applying the

logarithmic function itself (Appendix - Section 8).

5.2.3 Hybrid split

Although the linear splitting scheme falls short for uniform shapes and a constant, high alpha

value (Figure 5.2.1) and the logarithmic one does not work properly with objects that either

have scattered geometry or a low alpha value (Figure 5.2.3.1), using one of the splitting

scheme when the other falls short produces good results.

Figure 5.2.3.1 Real-world photographs of clouds (a) and trees (b). It can be observed that for objects having a

scattered geometry the lighting changes throughout the entire length of the object.

Section 5.2.1 already describes how to use a logarithmic split when the linear split does not

produce good enough results, however it can be the case that the layers obtained using linear

splitting already give different shadow information, usually for scattered geometry or a low

alpha value (Figure 5.2.3.2). Furthermore, in this case using logarithmic splitting would result

in a fairly poor rendering, because the first layers would contain the same shadow information

(Figure 5.2.3.3 and Figure 5.2.3.4).

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

35

Figure 5.2.3.2 Layers obtained using linear splitting on a scene containing a scattered tree. Every layer adds new

shadow information, i.e. is the different from the previous one.

Figure 5.2.3.3 Layers obtained using logarithmic splitting on a scene containing a scattered tree. The first four

layers contain almost the same shadow information.

Figure 5.2.3.4 Picture from Crystal Space. Difference in rendering when splitting using logarithmic splitting (a)

and linear splitting (b). Logarithmic splitting (a) produces artifacts, the willow is incorrectly lit near the top,

because most of the layers contain the same information (Figure 5.2.3.3).

Even though neither of these two splitting scheme can be used for any type of object they

complement each other, so when one scheme falls short the other can be used instead. Due to

this property a hybrid splitting scheme has been proposed in the current thesis that is a mix of

the linear and logarithmic splitting schemes.

The hybrid splitting function is built by doing a linear interpolation based on a variable that

sets the ratio between the linear and logarithmic splitting. This means that when the variable

is close to 0 the linear split is used, and when it is near 1 the logarithmic split is chosen

instead (Appendix - Section 9).

Many interactive approaches, such as the ones presented in Section 1.2, find the best splitting

points by first computing the visibility function, which is usually done using ray casting.

However such a technique only gives interactive results, unless GPGPU capable hardware is

used in which case Opacity Shadow Maps with a high number of maps (128) could also be

used offering good visuals and performance.

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

36

The novel idea of this thesis is to determine an approximation of the visibility function for

each ray by making use of the two contour maps and the opacity of the objects in the current

scene. This is achieved by automatically determining the best ratio between the linear and

logarithmic splitting from the hybrid splitting function.

The criteria for choosing the best ratio for various scenes with objects varying in density and

with a different number of layers was that each new layer should capture information that the

previous one did not.

Because the information that had to be measured was not contained in a single data, i.e. a

single image, the concept of entropy [KK92] could not be used for the current problem.

Instead ideas from computer vision regarding mutual information were applied [YG11].

For image registration, the mutual information between two images is computed using a

similarity measure. Because each bounding opacity map contains the same objects, and

therefore has the same shape, and only the transparency values differ, the image intensity is

meaningful on a pixel by pixel basis. This means that simple similarity measures such as sum

of absolute differences and correlation coefficient can be used.

The sum of absolute differences is fast and simple to compute and it involves iterating

through the two pictures and summing the absolute differences on a pixel by pixel basis.

In the case of the correlation coefficient the following equation is evaluated:

𝐶 =
 𝐼1 𝑥, 𝑦 − 𝐼1 𝑥,𝑦 𝐼2 𝑇 𝑥,𝑦 − 𝐼2

 𝑇 𝑥,𝑦 𝑥 ,𝑦

 𝐼1 𝑥,𝑦 − 𝐼1 𝑥,𝑦
2

𝑥 ,𝑦 𝐼2 𝑇 𝑥,𝑦 − 𝐼2
 𝑇 𝑥,𝑦

2

𝑥 ,𝑦

Equation 5.2.3.1 Defining the cross-correlation coefficient C

Where 𝐼 (∙) is the mean intensity of image 𝐼. The above equation represents the ratio between

the covariance of two images and the product of their standard deviation. The correlation has

values on a scale ranging from [-1, 1] and it gives a linear indication of the similarity between

images [YG11].

Even though the similarity measures presented above are usually used when trying to

maximize the mutual information between images, they can also be successfully applied in

order to minimize this mutual information. For instance in the case of the correlation

coefficient a value close to 0 means that the two input images are different. Therefore the

smallest value generated from different split ratios of the hybrid function corresponds to the

value for which the layers have the least mutual information, so each new layer adds new

information.

The way in which the split ratio varies for the two similarity measures, the sum of absolute

differences and the correlation coefficient, according to the number of layers, the position of

the light and the density of the translucent objects are presented in Appendix – Section 11.

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

37

Both similarity measures tend to have the same variation: the splitting becomes more linear

when either the object is sparser (Figure 5.2.3.5) or the number of layers increases (Figure

5.2.3.6). These two variations can be intuitively explained.

Figure 5.2.3.5 Plot generated using gnuplot. Sparser objects map better to linear splitting (the splitting ratio is

closer to 0) and denser ones perform better when logarithmic splitting is used (the splitting ratio is closer to 1)

The fact that sparser objects map better to linear splitting and that denser ones perform better

when logarithmic splitting is used has already been described in Section 5.2. The objects’

density has been altered by either creating sparser versions of the same model or changing the

way the light hits the object’s surface from sideways to above. For instance, the grass model

presented in Appendix – Section 11 appears sparser when viewed from above and denser

when viewed sideways.

Figure 5.2.3.6 Plot generated using gnuplot. Splitting tends to be more linear (the splitting ratio is closer to 0)

when the number of layers increases.

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

38

In the second case the splitting tends to be more linear when the number of layers increases

because linear splitting with more layers has the first pivot points similar to a logarithmic

distribution with fewer layers (Figure 5.2.3.7). This means that in both cases (Figure

5.2.3.7.a) and (Figure 5.2.3.7.b) the splitting tries to adapt itself to capture the most

significant details of the object situated usually at the beginning and if further splits are

available they are used to capture other possible details along the object as well.

Figure 5.2.3.7 Comparison between linear and logarithmic distributions. Linear splitting with more layers (a)

has the first pivot points similar to a logarithmic distribution with fewer layers (b).

Although the two similarity measures follow the same split ratio distribution the cross-

correlation covers a wider range of values making it converge faster to the values that are to

be expected from Section 5.2. This happens because the cross-correlation not only takes into

account the difference of intensities between pixels, but their covariance as well. The problem

with the sum of absolute differences is that the information provided by the variance is not

used at all. Therefore a split ratio that produces a higher sum of absolute differences is chosen

each time, without taking into account if the variance increases as well. This can lead to layers

having a big covariance which is not desirable because each new layer should add new

information. By doing this, cases where a few layers bring a lot of new information and the

rest contain roughly the same data can be avoided.

Because the comparison between layers, or images, is done at a global level the render

textures have to be readback from the GPU and processed on the CPU. The amount needed to

do a readback, even when using optimized texture formats for doing such an operation,

exceeds the real-time limits so this operation is not done on a frame by frame basis. However,

this does not represent a limitation because there is no need to recompute the splitting ratio

unless the density of the objects in the scene significantly changes. This can only happen

when the object changes its density or the light hits the object’s surface from an entirely

different angle, both of which hardly ever occur.

It is important to note that the algorithm presented so far does not find the optimal number of

layers and splitting ratio, but only finds the best splitting ratio for a given number of layers. It

does this by choosing a more logarithmic split when fewer layers are available and a more

linear one when a bigger number of layers is specified so that the significant details from the

beginning of the object are always captured (Figure 5.2.3.7).

The reason why the number of layers has not been automatically chosen is that even though

adding new layers increases the details in rendering it also always increases the cross-

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

39

correlation coefficient because the images become closer to one-another and therefore more

correlated. Because there is a monotonic increase of the correlation-coefficient while

increasing the number of layers (Table 5.2.3.1), the minimum or the maximum coefficient

could not be used in the way it was used for choosing the optimal splitting ratio.

 Scene

Layers

Trees Grass Dense grass

Correlation FPS Correlation FPS Correlation FPS

4 0.66 98 0.72 65 0.72 49

8 0.83 96 0.86 64 0.86 47

16 0.92 80 0.93 53 0.93 43

32 0.96 60 0.96 40 0.96 34

Table 5.2.3.1 The variance between cross-correlation coefficient and performance (measured in FPS) on

different scenes from Crystal Space (Appendix – Section 11). Increasing the number of layers causes a

monotonic increase of the cross-correlation coefficient and a monotonic decrease in performance.

The only way of choosing the best number of layers is by computing a ratio between the

rendering quality and the performance of the program. Even though the results from Table

5.2.3.1 show a significant decrease in performance between the best and the worst FPS

(frames-per-second), with an average of 50%, there is no straight-forward way to

automatically measure the rendering quality of a scene. For this reason and because this is a

real-time rendering engine designed for possible future games, choosing the optimal number

of layers is done by the user. This can be done via a video graphic setting menu that sets the

maximum number of multiple render targets from the values supported by the graphics card.

Algorithm 5.2.3.1 illustrates how a splitting scheme can be introduced to the general

Bounding Opacity Maps algorithm (Algorithm 5.1)

1. init:

2. split_ratio := 0.0

3. best_split := 0.0

4. geometry := load_scene('scene_file.txt')

5. recompute_split_ratio := true

6. render_loop:

7. start_depth_map : = render_pass(geometry)

8. end_depth_map : = render_pass(geometry)

9. render_textures : = render_pass(split_ratio, start_depth_map,

end_depth_map, geometry)

10. IF recompute_split_ratio = true

11. best_split := process_image(split_ratio, best_split,

render_textures, geometry)

12. END

13. render_scene(split_ratio, render_textures, start_depth_map,

end_depth_map, geometry)

14. IF recompute_split_ratio

15. split_ratio := split_ratio + 0.1

16. END

17. IF split_ratio = 1.1

18. split_ratio := best_split

19. recompute_split_ratio := false

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

40

20. END

21. needs_recompute:

22. recompute_split_ratio := true

23. split_ratio := 0.0

Algorithm 5.2.3.1 Integrating a splitting scheme in the Bounding Opacity Maps method. When the hybrid split

ratio needs to be updated, either the needs_recompute (line 21) function or the init (line 1) one have been

called, the best split ratio is determined by the CPU implemented process_image (line 11) method. The

optimal split ratio is determined from values between 0.0 and 1.0 increased by 0.1 (line 15), in a timespan of 11

frames (line 17).

5.2.4 Computing cross-correlation

Both algorithms that choose the optimal split ratio work with entire images and because of

that they are implemented on CPU. In order to get the render textures back from the GPU

several readbacks are done when the split ratio needs to be recomputed. Because readbacks

are quite costly, the computation of the optimal split can become a bottleneck unless the sum

of absolute differences or the cross-correlation coefficient are efficiently calculated, i.e.

iterating only once on the given images. The sum of absolute difference is computed using

only one iteration through the data set by its definition, but according to Equation 5.2.3.1 it

may appear that the cross-correlation needs several iterations. For instance the mean and the

covariance from this equation might be computed each using a separate iteration and another

final iteration can be added to compute the final division.

However, according to [GZY11] such equations, regarding cross-correlation or moments, can

be done using only one pass if we consider the mean as a constant and simplify it from the

sum. For instance, Equation 5.2.3.1 can be split into three independent parts:

𝐸1 = 𝐼1 𝑥,𝑦 − 𝐼1 𝑥,𝑦 𝐼2 𝑥,𝑦 − 𝐼2
 𝑥, 𝑦

𝑥 ,𝑦

𝐸2 = 𝐼1 𝑥,𝑦 − 𝐼1 𝑥,𝑦
2

𝑥 ,𝑦

𝐸3 = 𝐼2 𝑥,𝑦 − 𝐼2
 𝑥, 𝑦

2

𝑥 ,𝑦

And because in this case 𝑇 𝑥, 𝑦 = 𝑥,𝑦 the cross-correlation coefficient can be defined as:

𝐶 =
𝐸1

 𝐸2 ∙ 𝐸3

Using these definitions 𝐸1, 𝐸2 and 𝐸3 still need the mean of the image, 𝐼 (∙), in order to be

computed. Applying the observation from [GZY11] 𝐸1 becomes:

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

41

𝐸1 = 𝐼1 𝑥,𝑦 − 𝐼1 𝑥, 𝑦 𝐼2 𝑥, 𝑦 − 𝐼2
 𝑥,𝑦

𝑥 ,𝑦

= 𝐼1 𝑥,𝑦 ∙ 𝐼2 𝑥,𝑦 − 𝐼1 𝑥,𝑦 ∙ 𝐼2
 𝑥,𝑦 − 𝐼1 𝑥,𝑦 ∙ 𝐼2 𝑥,𝑦 + 𝐼1 𝑥,𝑦 ∙ 𝐼2

 𝑥,𝑦

𝑥 ,𝑦

= 𝐼1 𝑥, 𝑦 ∙ 𝐼2 𝑥,𝑦

𝑥 ,𝑦

− 𝐼2
 𝑥,𝑦 ∙ 𝐼1 𝑥,𝑦 −

𝑥 ,𝑦

𝐼1 𝑥,𝑦 ∙ 𝐼2 𝑥,𝑦 + 𝑁 ∙

𝑥 ,𝑦

𝐼1 𝑥,𝑦 ∙ 𝐼2
 𝑥,𝑦

Where 𝑁 is the image size and because

 𝐼1 𝑥,𝑦 = 𝑁 ∙ 𝐼1 𝑥,𝑦

𝑥 ,𝑦

The term 𝐸1 can be further simplified:

𝐸1 =

= 𝐼1 𝑥, 𝑦 ∙ 𝐼2 𝑥,𝑦

𝑥 ,𝑦

− 𝑁 ∙ 𝐼2
 𝑥,𝑦 ∙ 𝐼1 𝑥,𝑦 − 𝑁 ∙ 𝐼1 𝑥,𝑦 ∙ 𝐼2

 𝑥,𝑦 + 𝑁 ∙ 𝐼1 𝑥,𝑦 ∙ 𝐼2
 𝑥,𝑦

= 𝐼1 𝑥, 𝑦 ∙ 𝐼2 𝑥,𝑦

𝑥 ,𝑦

− 𝑁 ∙ 𝐼1 𝑥,𝑦 ∙ 𝐼2
 𝑥,𝑦

In the above form 𝐸1 can be calculated using only one loop over the image. Using the same

idea 𝐸2 can be simplified as well:

𝐸2 = 𝐼1 𝑥, 𝑦 − 𝐼1 𝑥,𝑦
2

𝑥 ,𝑦

= 𝐼1 𝑥,𝑦 2 − 2 ∙ 𝐼1 𝑥,𝑦 ∙ 𝐼1 𝑥,𝑦 + 𝐼1 𝑥,𝑦 2

𝑥 ,𝑦

= 𝐼1 𝑥,𝑦 2 − 2 ∙ 𝐼1 𝑥,𝑦 ∙ 𝐼1 𝑥,𝑦 + 𝐼1 𝑥,𝑦 2

𝑥 ,𝑦𝑥 ,𝑦𝑥 ,𝑦

= 𝐼1 𝑥, 𝑦 2 − 2 ∙ 𝐼1 𝑥,𝑦 𝐼1 𝑥,𝑦 + 𝐼1 𝑥,𝑦 2 1

𝑥 ,𝑦𝑥 ,𝑦𝑥 ,𝑦

= 𝐼1 𝑥,𝑦 2 − 2 ∙ 𝑁 ∙ 𝐼1 𝑥,𝑦 ∙ 𝐼1 𝑥, 𝑦

𝑥 ,𝑦

+ 𝑁 ∙ 𝐼1 𝑥, 𝑦 2 = 𝐼1 𝑥,𝑦 2 − 𝑁 ∙ 𝐼1 𝑥,𝑦 2

𝑥 ,𝑦

Similarly 𝐸3 can be rewritten as:

𝐸3 = 𝐼2 𝑥, 𝑦 2 − 𝑁 ∙ 𝐼2
 𝑥,𝑦 2

𝑥 ,𝑦

Using 𝐸1 , 𝐸2 and 𝐸3 , the cross-correlation can be computed in only one iteration over the

images retrieved from the GPU in which the following terms are calculated (Appendix –

Section 12):

 𝐼1 𝑥, 𝑦 ∙ 𝐼2 𝑥,𝑦

𝑥 ,𝑦

, 𝐼1 𝑥,𝑦 , 𝐼2
 𝑥,𝑦 , 𝐼1 𝑥,𝑦 2 and

𝑥 ,𝑦

 𝐼2 𝑥,𝑦 2

𝑥 ,𝑦

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

42

5.3 Adding common lighting effects

Because the techniques described so far only determine how the light contributes to the self-

shadowing of a translucent object, similar to the diffuse lighting term in the Blinn-Phong

shading model [B77], the other terms had to be added as well.

In the case of opaque objects all the terms from Blinn-Phong are applied, and for translucent

objects the diffuse lighting is replaced by the information given by the self-shadowing

technique (Appendix - Section 10).

Figure 5.3.1 Picture from Crystal Space. Difference in rendering when using Blinn-Phong terms for opaque

objects (b) and when using only self-shadowing information from translucent objects (a).

Moreover, opaque objects had to be introduced in the computation of the shadow maps.

However, because a depth shadow map was already used in computing the starting splitting

points for translucent objects, making opaque objects cast shadows was easily introduced by

adding the opaque objects in the already existing depth shadow map. Even though this depth

map could have been used directly for testing if an object is shadowed or not, the depth

information was also given to the shadow opacity maps so that all objects would cast shadows

using the same technique (Figure 5.3.2).

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

43

Figure 5.3.2 Picture from Crystal Space. Difference in rendering when opaque objects, the trees’ trunk and

branches, do not cast shadows (a) and do cast shadows (b).

5.4 Limitations

The limitations of the bounding opacity maps are given by the splitting methods used, either

linear, logarithmic or a hybrid of the first two.

A limitation is that only one splitting function is chosen for the whole scene, and this is

caused by the fact that the splitting ratio is determined using entire images and not only pixels

or regions. Because of this a scene containing a dense object and a sparse one will be treated

as a scene which contains an object which is neither dense nor sparse yielding an inadequate

rendering.

In the case of some objects that change their density, like smoke for instance which is a

translucent model frequently used in real-time applications such as games, the splitting ratio

needs to be recomputed. This computation involves texture readbacks and image processing

both done on the CPU, in the current implementation, which makes the application turn from

real-time to interactive for a couple of seconds. Furthermore the splitting ratio also has to be

recomputed when the light changes its position and other models with different translucency

levels are brought into the light’s perspective.

A last limitation of the splitting method is related to the fact that the number of layers used

has to be specified, via the number of available multiple render targets, by the user. This can

lead to an inefficient usage of the hardware, by doing a lot more computations than are

actually needed in order to produce the same rendering. A better method would be to

determine the optimal number of layers and check if they are available on the hardware the

application is running on.

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

44

6. Results & Performance

In this section the main three algorithms presented and implemented in this thesis, Opacity

Shadow Maps, Deep Opacity Maps and Bounding Opacity Maps are analyzed regarding their

performance and visual aspect according to the number of layers used.

The performance is measured in frames-per-second (FPS) using the average FPS provided by

Fraps [FRAPS] benchmarking tool for a period of 60 seconds. The measures were taken on a

Dell Alienware M11x [M11x] having the following hardware components:

 Processor: Intel Pentium Dual-Core, 1.3 GHz

 Memory: DDR3 SDRAM, 4 GB

 Graphics: NVIDIA GT 335M, 1 GB

Moreover the application was tested on the following software configuration:

 Rendering resolution: 1024x768

 Render target’s resolution: 512x512

 Operating System: Windows 7 Home Premium, Service Pack 1

 Compiler / IDE: Microsoft Visual Studio 2010 Professional, DebugWithDlls Win32.

Because all three algorithms are GPU bound, they involve rendering the scene multiple times

and almost no task is done on CPU, the GPU card had the most important contribution in the

measurements taken.

6.1 Opacity Shadow Maps

As can be seen from Table 6.1.1 Opacity Shadow Maps represent a fast way of obtaining

volumetric shadow maps, although they suffer from serious visual artifacts as described in

Section 3.2 and Section 3.3.

 Scene FPS

Layers Trees Grass Dense grass

4 147.58 137.53 107.76

8 124.85 110.00 79.91

16 86.68 73.87 59.53

32 53.80 39.83 36.58

Table 6.1.1 The variance between the number of layers used and the performance measured in FPS, for Opacity

Shadow Maps.

Whereas Deep Opacity Maps and Bounding Opacity Maps have entire maps for the start and

the end splitting points, Opacity Shadow Maps only use one start splitting point and one end

splitting point, which gives the algorithm a good performance, but poor rendering results. In

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

45

order to keep the Opacity Shadow Map implementation GPU bond, the start and the end

splitting points were obtained by using bounding boxes and not iterating through entire 3D

models.

6.2 Deep Opacity Maps

Deep Opacity Maps represent a compromise between performance and visual aspect, fixing

the sever artifacts from Opacity Shadow Maps, while having a better FPS than Bounding

Opacity Maps (Table 6.2.1).

 Scene FPS

Layers Trees Grass Dense grass

4 112.10 77.38 70.53

8 90.66 60.56 61.23

16 63.96 47.93 41.85

32 43.90 29.45 27.28

Table 6.2.1 The variance between the number of layers used and the performance measured in FPS, for Deep

Opacity Maps.

6.3 Bounding Opacity Maps

Even though Deep Opacity Maps might have a better performance than Bounding Opacity

Maps (Table 6.3.1) when using the same number of layers, the latter method produces better

visuals with fewer layers. This happens because Bounding Opacity Maps give a better

bounding of the object, there is a depth map for the end splitting points as well, and on top of

that if the hybrid split is used better renderings are obtained with even fewer layers.

 Scene FPS

Layers Trees Grass Dense grass

4 73.41 61.18 49.80

8 67.53 55.13 43.61

16 58.91 46.96 34.66

32 41.88 31.93 26.80

Table 6.3.1 The variance between the number of layers used and the performance measured in FPS, for

Bounding Opacity Maps.

An overall comparison between the three algorithms implemented in this thesis is show in

Figure 6.3.1. It can be seen that for a larger number of layers the Bounding Opacity Maps

method tends to have the same performance as Deep Opacity Maps, because the extra render

pass, computing the end splitting points, becomes computationally insignificant.

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

46

Figure 6.3.1 Plot generated using gnuplot. The variance between the number of layers and the FPS for Opacity

Shadow Maps (red), Deep Opacity Maps (green) and Bounding Opacity Maps (blue). Even though Deep Opacity

Maps have better performance than Bounding Opacity Maps, the latter method produces better visuals with

fewer layers.

7. Future work

In this section various approaches that try to fix the limitations presented in Section 5.4 are

proposed.

Using a different split ratio for each individual ray can solve the fact that for the current

version there is only one splitting function for the whole scene, causing incorrect renderings

when multiple objects with different densities are present. This can be done by creating a

splitting texture (Figure 7.1.b), which will store the split ratio for each individual ray in a

different pixel.

A straight forward way to produce such a texture is by using the sum of absolute differences

method of splitting on individual pixels, or regions (Figure 7.1.c), rather than on whole

images.

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

47

Figure 7.1 Picture created with paint.net. Estimate of how the splitting texture would look for individual pixels

(b) and for regions (c) for some given layers (a). A dark color in the splitting texture (b) corresponds to a linear

split while a bright one represents a more logarithmic split for the corresponding ray / pixel.

However a disadvantage of splitting on individual rays is that in order for each splitting ratio

to always be up-to-date it would have to be recomputed every time a translucent object moves

or the light changes its position. These events occur quite frequently unlike the ones from the

global splitting function which took place only when an object changed its density or objects

with new densities were brought into the light’s perspective. Because of this the splitting

texture would have to be computed on a frame by frame basis.

Unfortunately this would not be possible for the current implementation because recomputing

the global splitting function already represents a bottleneck causing the application to have

only interactive performance when such a task is performed. Furthermore, adding another

texture read and more importantly a texture write, necessarily for updating the splitting

texture, would only result in a decrease in performance.

Luckily because only local information is needed from the layers, the image processing step

does not have to be done on the CPU and so no costly texture reads or writes are necessary.

The splitting texture can be computed on the GPU by adding a new render pass built like a

post-processing shader [JRP95], were both the input and the output are images and fragments

from the fragment program represent a pixel in the image space.

For the splitting texture problem the input images are render textures obtained when using a

predefined splitting ratio, having values from 0.0 to 1.0 using a 0.1 step. The output for each

fragment is the optimal sum of absolute differences and the corresponding optimal splitting

value found so far, encoded in two different texture channels. Because finding an optional

split ratio takes 11 frames, the number of values from 0.0 to 1.0 using a 0.1 step, two copies

of the render textures should be kept: one used for rendering and the other one for finding the

future best split ratio. Once 11 frames have passed the opacity layers used for rendering can

be recomputed so that they are determined by the newly found optimal split texture, and the

process of finding the optimal split can start once more (Algorithm 7.1).

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

48

1. init:

2. split_ratio := 0.0

3. best_split_texture := 0.0

4. geometry := load_scene('scene_file.txt')

5. render_loop:

6. start_depth_map := render_pass(geometry)

7. end_depth_map := render_pass(geometry)

8. [backup_render_textures, split_texture] :=

render_pass(split_ratio, split_texture, start_depth_map,

end_depth_map, geometry)

9. render_textures := render_pass(best_split_texture,

start_depth_map, end_depth_map, geometry)

10. render_scene(render_textures, best_split_texture,

start_depth_map, end_depth_map, geometry)

11. split_ratio := split_ratio + 0.1

12. IF split_ratio = 1.1

13. split_ratio := 0.0

14. best_split_texture := split_texture

15. END

Algorithm 7.1 Extending Bounding Opacity Maps to support splitting textures. The individual splitting ratios,

defined on line 3, are updated every 11 frames (line 12) so there is no need for a needs_recompute function.

Because the splitting ratios are permanently updated the effects that happen when using the predefined split

ratios, between 0.0 and 1.0 (line 11), must not be rendered, so another set of render textures is used (line 8). This

algorithm should have a real-time performance because the best splitting ratios are computed on the GPU and

not on the CPU (line 8).

Although adding another render pass to compute the splitting texture will probably result in a

decrease in performance this will also solve the rendering inconsistencies for scenes having

object with different density levels. Furthermore, because the individual splitting ratios will

be permanently updated on the GPU there will be no CPU bottleneck when the scene will be

updated and eligibly the application will run in real-time.

The last limitation found for the splitting method is that it doesn’t compute the optimal

number of layers, but only the optimal splitting ratio. Because as stated in Section 5.3.3 it is

hard to determine a ratio between the rendering quality and the performance, choosing the

optimal number of layers could be done only by taking into account the performance which

has to be real-time, i.e. more than 30 FPS. In order to do this a benchmarking fly-through

scene in which the number of layers is increased as long as it keeps the application real-time

could be used, similar to the one from Half Life 2: Lost Coast Benchmark [HL2LC05].

Because each new layer adds new details the maximum number of layers is actually the

optimal number of layers which keeps the application real-time on the hardware configuration

the scene was run.

Although the current implementation works with foliage, like trees and grass, and hair,

support for other translucent objects, like clouds and smoke, could also be added as another

possible future improvement. The reason why these types of translucent object are not

currently supported is because they are usually rendered using volumetric rendering which is

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

49

yet to be implemented in Crystal Space. With the aid of volumetric rendering clouds could be

simulated using metaballs, as describe in "A Simple, Efficient Method for Realistic

Animation of Clouds" [DKY00]. The metaballs rendering consists of approximating the cloud

volume with a set of spheres which are then used to test the intersection with rays shoot from

the light’s direction. However, this cannot be achieved with a regular, non-volumetric

approach because the spheres would be rendered only as surfaces and not as volumes (Figure

7.2).

Figure 7.2 Picture taken from Crystal Space. Using non volumetric rendering techniques produces incorrect

renderings because the metaballs spheres are rendered as surfaces and not volumes, both when rendering the

final scene and when rendering to texture.

8. Conclusions

Translucent objects, like foliage or hair, need to cast shadows on themselves in order to

produce realistic renderings.

The first method that produces realistic self-shadows in real-time for such translucent object

appeared in 2000 and it is called Opacity Shadow Maps. The main disadvantage of this

algorithm is that it is artifact free only when a lot of opacity maps are used, causing the

application to exceed the real-time limits.

Deep Opacity Maps produce quality renderings with just a few layers by aligning the opacity

maps with the start shape of the geometry as seen from the light’s perspective. However,

because no information regarding the end position or shape of the objects is provided this

method cannot be used on scenes having objects of different sizes.

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

50

Bounding Opacity Maps, a novel approach proposed in this thesis, fixes the limitations of

Deep Opacity Maps by specify a bounding volume, via two depth maps, for all translucent

objects in the scene. Moreover, various splitting schemes, such as linear or logarithmic, have

been tried in order to better determine the splitting positions. In the end a hybrid splitting

function that is more linear for sparse object and more logarithmic for dense ones was

considered the best choice.

Individual split functions and real-time updates are still to be added, as well as support for

finding the optimal number of splitting points and support for rendering other types of

translucent objects, such as clouds or smoke.

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

51

References

[KK89] James Kajiya, Timothy Kay "Rendering Fur with Three Dimensional

 Textures". Proceedings of ACM SIGGRAPH 1989.

[MJC03] Stephen Marschner, Henrik Wann Jensen, Mike Cammarano "Light Scattering

 from Human Hair Fibers". Proceedings of SIGGRAPH 2003.

[LV00] Tom Lokovic. Eric Veach "Deep Shadow Maps". Proceedings SIGGRAPH

 2000.

[L88] Marc Levoy "Display of Surfaces from Volume Data". June 1987.

[KN01] Tae-Yong Kim, Ulrich Neumann "Opacity Shadow Maps". Eurographics

 Rendering Workshop 2001.

[MKBR04] Tom Mertens, Jan Kautz, Philippe Bekaert, Frank Van Reethy "A Self-Shadow

 Algorithm for Dynamic Hair using Density Clustering". Eurographics

 Symposium on Rendering 2004.

[LB10] Jon Jansen, Louis Bavoil "Fourier Opacity Mapping". Proceedings I3D 2010

 conference.

[Llo82] S. Lloyd "Least squares quantization in PCM". IEEE Trans. on Information

 Theory 28, 2 (1982), 127.138. 3, 5

[CUDA07] Compute Unified Device Architecture 2007 -

 http://www.nvidia.com/object/cuda_home_new.html

[SA07] Erik Sintorn, Ulf Assarsson "Fast Parallel GPU-Sorting Using a Hybrid

 Algorithm". Journal of Parallel and Distributed Computing, Volume 68, Issue

 10, Pages 1381-1388, October 2008.

[SA08] Erik Sintorn, Ulf Assarsson "Real-Time Approximate Sorting for Self

 Shadowing and Transparency in Hair Rendering". Proceedings of I3D 2008, pp

 157-162, February, 2008.

[QSORT] C/C++ quicksort implementation - http://linux.die.net/man/3/qsort

[V10] Alexandru Teodor Voicu "Rendering real-time self-shadowed dynamic hair".

 Independent Study Option, Imperial College London, May 2010.

[YK08] Cem Yuksel, John Keyser "Deep Opacity Maps". Eurographis 2008.

[CS07] Crystal Space - http://www.crystalspace3d.org

[CSM08] Crystal Space Online Manual, Version 1.9.0, 2008:

 http://www.crystalspace3d.org/docs/online/manual/.

http://www.nvidia.com/object/cuda_home_new.html
http://linux.die.net/man/3/qsort
http://www.crystalspace3d.org/
http://www.crystalspace3d.org/docs/online/manual/

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

52

[CSD08] Crystal Space Documentation, Public API Reference, Version 1.9.0, 2008

 http://www.crystalspace3d.org/docs/online/api/.

[CS11] Crystal Space Google Summer of Code 2011 selfshadow branch -

https://crystal.svn.sourceforge.net/svnroot/crystal/CS/branches/soc2011/selfsha

dow/

[H04] Shawn Hargreaves "Deferred Shading". GDC 2004 climax.

[ZFSXS06] Zhang, Fan, Hanqiu Sun, Leilei Xu, and Kit-Lun Lee. 2006. "Parallel-Split

 Shadow Maps for Large-Scale Virtual Environments." Proceedings of ACM

 International Conference on Virtual Reality Continuum and Its Applications

 2006, pp. 311–318.

[D07] Rouslan Dimitrov "Cascaded Shadow Maps". NVIDIA Corporation, August

 2007.

[SKWFH92] M. Segal, C. Korobkin, Rolf van Widenfelt, J. Foran, P. Haeberli "Fast

Shadows and Lighting Effects Using Texture Mapping". Computer Graphics

(Proceedings of SIGGRAPH ’92), July 1992.

[ZSN07] Fan Zhang, Hanqiu Sun, Oskari Nyman "Parallel-Split Shadow Maps on

 Programmable GPUs". GPU Gems 3, Chapter 10, December 2007.

[OGL97] OpenGL 2.1 Reference Pages,

 http://www.opengl.org/sdk/docs/man/xhtml

[ND05] Hubert Nguyen, William Donnelly "Hair Animation and Rendering in the Nalu

 Demo". GPU Gems 2, Chapter 23, April 2007.

[MRT04] Multiple Render Targets, Pixel Pipeline, MSDN Library 2004

 http://msdn.microsoft.com/en-us/library/

[DL06] William Donnelly, Andrew Lauritzen "Variance Shadow Maps". Proceedings

 of the 2006 symposium on Interactive 3D graphics and games, ACM, 2006.

[RSC87] Reeves W. T., Salesin D., Cook R. L.: Rendering antialiased shadows with

 depth maps. Computer Graphics (Proceedings of SIGGRAPH ’87) (1987),

 283–291.

[BP04] Michael Bunnell, Fabio Pellacini "Shadow Map Antialiasing". GPU Gems,

 Chapter 11, September 2004.

[tex2D] Cg 3.0 Toolkit Documentation, Cg Standard Library, NVIDIA February 2011 -

 http://http.developer.nvidia.com/Cg/tex2D.html

[SL04] Sebastien St-Laurent "Shaders for Game Programmers and Artists". Chapter 6,

2004.

http://www.crystalspace3d.org/docs/online/api/
https://crystal.svn.sourceforge.net/svnroot/crystal/CS/branches/soc2011/selfshadow/
https://crystal.svn.sourceforge.net/svnroot/crystal/CS/branches/soc2011/selfshadow/
http://www.opengl.org/sdk/docs/man/xhtml/glBlendFunc.xml
http://msdn.microsoft.com/en-us/library/
http://http.developer.nvidia.com/Cg/tex2D.html

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

53

[CW04] Chris Wynn "OpenGL Render-to-Texture". NVIDIA Corporation 2004.

[B77] J. F. Blinn "Models of Light Reflection for Computer Synthesized Pictures".

 Proceedings of SIGGRAPH 1977, volume 11, pp 192-198.

[KK92] J. N. Kapur, H. K. Kesavan "Entropy Optimization Principles with

Applications". May 1992.

[YG11] G. Z. Yang, D. F. Gillies "Image Registration". Compuer Vision 13
th

 Course,

Imperial College London, November 2011.

[GZY11] G. Z. Yang, "Moments". Compuer Vision 6
th

 Tutorial, Imperial College

London, November 2011.

[M11x] Dell Alienware M11x Gaming Laptop, First Generation

http://www.dell.com/us/p/alienware-m11x/pd

[FRAPS] Fraps, Real-Time video capture & benchmarking - http://www.fraps.com/

[JRP95] J.R. Parker, "A Shaer Memory System – Using the PC Graphics Processor".

Algorithms for Image Processing and Computer Vision, Second Edition,

Chapter 11, pp 444-459, November 1995

[HL2LC05] Half-Life 2: Lost Coast, Valve Software, Steam, October 2005.

[DKY00] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and T. Nishita, "A simple,

efficient method for realistic animation of clouds". In Proceedings of ACM

SIGGRAPH 2000, pp 19–28.

http://www.dell.com/us/p/alienware-m11x/pd
http://www.fraps.com/

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

54

Appendix

Section 1

Excerpt from the shader generating 4 opacity maps in one texture by using all 4 available

channels.

float value = surface.a;

value = value * (surface.a != 1);

int i;

for (i = 0 ; i <= numSplits ; i ++)

if (passColor[i] > positionCamera.z)

break;

int index = i % 4;

float4 color = value;

color = color * float4(index < 1, index < 2, index < 3, 1);

output = color;

Section 2

Excerpt from the shader generating the final opacity function by adding information from all

precedent render textures.

float previousMap = 0, nextMap = 0;

int prevIndex = min((i / 4), numSplits);

float2 prevPos = getPosition(prevIndex);

for (int j = 0 ; j < prevIndex ; j ++)

previousMap += getMapValue(4 * (j + 1) - 1, prevPos);

int nextIndex = min((i + 1) / 4, numSplits);

float2 nextPos = getPosition(nextIndex);

nextMap = previousMap;

for (int j = prevIndex ; j < nextIndex ; j ++)

nextMap += getMapValue(4 * (j + 1) - 1, nextPos);

previousMap += getMapValue(i, prevPos);

nextMap += getMapValue(i + 1, nextPos);

inLight = lerp(previousMap, nextMap, (float) (viewPos.z -

 previousSplit) / (nextSplit - previousSplit));

inLight = inLight * (i != numSplits) + previousMap * (i ==

 numSplits);

inLight = exp(-1.0 * inLight);

return inLight;

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

55

Section 3

Excerpt from the shader accessing and writing only to valid render targets, depending on the

number of render targets actually supported by the video card.

<![CDATA[

 struct fragmentOutput

 {

 float4 Color0 : COLOR0;

]]>

<?if vars."mrt".int > 1?>

 <![CDATA[

 float4 Color1 : COLOR1;

 float4 Color2 : COLOR2;

 float4 Color3 : COLOR3;

]]>

<?if vars."mrt".int > 4?>

 <![CDATA[

 float4 Color4 : COLOR4;

 float4 Color5 : COLOR5;

 float4 Color6 : COLOR6;

 float4 Color7 : COLOR7;

]]>

<?endif?>

<?endif?>

<![CDATA[

 };

]]>

<![CDATA[

 float value = surface.a;

 value = value * (surface.a != 1);

 int i;

 for (i = 0 ; i <= numSplits ; i ++)

 if (passColor[i] > IN.position_camera.z)

 break;

 int index = i % 4;

 float4 color = value;

 color = color * float4(index < 1, index < 2, index < 3, 1);

 // write in the correct render target

 int renderTarget = (i / 4) % mrt;

 output.Color0 = color * (renderTarget == 0);

]]>

<?if vars."mrt".int > 1?>

<![CDATA[

 output.Color1 = color * (renderTarget == 1);

 output.Color2 = color * (renderTarget == 2);

 output.Color3 = color * (renderTarget == 3);

]]>

<?if vars."mrt".int > 4?>

<![CDATA[

 output.Color4 = color * (renderTarget == 4);

 output.Color5 = color * (renderTarget == 5);

 output.Color6 = color * (renderTarget == 6);

 output.Color7 = color * (renderTarget == 7);

]]>

<?endif?>

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

56

<?endif?>

<![CDATA[

 return output;

}

]]>

Section 4

Code from [BP04], for doing a brute force percentage-closer filter o 4x4 texel.

float3 offset_lookup(sampler2D map,

 float4 loc,

 float2 offset)

{

 return tex2Dproj(map, float4(loc.xy + offset * texmapscale * loc.w,

 loc.z, loc.w));

}

float sum = 0;

float x, y;

for (y = -1.5; y <= 1.5; y += 1.0)

 for (x = -1.5; x <= 1.5; x += 1.0)

 sum += offset_lookup(shadowmap, shadowCoord, float2(x, y));

Section 5

Excerpt from the second rendering pass, generating the depth opacity maps using multiple

targets. Instead of storing information just between two splitting points, the layers save

information from all previous splitting points.

<![CDATA[

 output.Color0 = color * (renderTarget == 0);

]]>

<?if vars."mrt".int > 1?>

<![CDATA[

 output.Color1 = color * (renderTarget == 1);

 output.Color2 = color * (renderTarget == 2);

 output.Color3 = color * (renderTarget == 3);

]]>

<?if vars."mrt".int > 4?>

<![CDATA[

 output.Color4 = color * (renderTarget == 4);

 output.Color5 = color * (renderTarget == 5);

 output.Color6 = color * (renderTarget == 6);

 output.Color7 = color * (renderTarget == 7);

]]>

<?endif?>

<?endif?>

<![CDATA[

 return output;

}

]]>

The above section is replaced without introducing any additional computational cost by:

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

57

<![CDATA[

 output.Color0 = color * (renderTarget <= 0);

]]>

<?if vars."mrt".int > 1?>

<![CDATA[

 output.Color1 = color * (renderTarget <= 1);

 output.Color2 = color * (renderTarget <= 2);

 output.Color3 = color * (renderTarget <= 3);

]]>

<?if vars."mrt".int > 4?>

<![CDATA[

 output.Color4 = color * (renderTarget <= 4);

 output.Color5 = color * (renderTarget <= 5);

 output.Color6 = color * (renderTarget <= 6);

 output.Color7 = color * (renderTarget <= 7);

]]>

<?endif?>

<?endif?>

<![CDATA[

 return output;

}

]]>

Section 6

Excerpt from the third rendering pass from Bounding Opacity Maps. The splitting points are

determined by a linear interpolation between the values read from the two depth maps.

<![CDATA[

 fragmentOutput main (vertex2fragment IN,

 uniform sampler2D TexDiffuse,

 uniform sampler2D DepthStartMap,

 uniform sampler2D DepthEndMap)

 {

 fragmentOutput output;

 float4 surface = tex2D (TexDiffuse, IN.TexCoord);

 float value = surface.a;

 // compute the projection for the depthStart map

 float3 shadowMapCoordsBiased =

 (float3(0.5)*IN.shadowMapCoordsProj.xyz) + float3(0.5);

 float2 position = shadowMapCoordsBiased.xy;

 float compareDepth = (1 - shadowMapCoordsBiased.z) ;

 float depthStart = tex2D(DepthStartMap, position).x;

 float depthEnd = tex2D(DepthEndMap, position).x;

 int layer;

 layer = min(((compareDepth - depthStart) / (1 - depthEnd -

 depthStart)) * (numSplits - 1), numSplits - 1);

 ...

 return output;

 }

]]>

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

58

Section 7

Excerpt from the initialization stage where the lookup texture encoding the logarithmic

splitting is computed.

double end = textureSize - 1;

double range = (int)(log(end - 1.0)/log(2.0));

double start = end - range;

data[0] = 0;

for (int i = 4 ; i < 4 * textureSize ; i += 4)

{

 data[i] = (unsigned char)csMin(((log(pow(2.0, start) * (i / 4.0))

 / log(2.0) - start) * end / range) , end) * 255 / end;

}

Section 8

Excerpt from the third rendering pass, which uses only a lookup texture instead of numerous

arithmetic operations.

<![CDATA[

 fragmentOutput main (vertex2fragment IN,

 uniform sampler2D TexDiffuse,

 uniform sampler2D DepthStartMap,

 uniform sampler2D DepthEndMap,

 uniform sampler2D SplitFunc)

 {

 fragmentOutput output;

 float4 surface = tex2D (TexDiffuse, IN.TexCoord);

 float value = surface.a;

 // compute the projection for the depthStart map

 float3 shadowMapCoordsBiased =

 (float3(0.5)*IN.shadowMapCoordsProj.xyz) + float3(0.5);

 float2 position = shadowMapCoordsBiased.xy;

 float compareDepth = (1 - shadowMapCoordsBiased.z) ;

 float depthStart = tex2D(DepthStartMap, position).x;

 float depthEnd = tex2D(DepthEndMap, position).x;

 int layer;

 layer = min(tex2D(SplitFunc, float2(min((compareDepth -

 depthStart) / (1 - depthEnd - depthStart) , 0.9999) , 0)).x

 * (numSplits - 1), numSplits - 1);

 ...

 return output;

 }

]]>

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

59

Section 9

Excerpt from the initialization stage where the lookup texture encoding the hybrid splitting is

computed. Values near 0 for the logValue variable correspond to linear splitting, while values

close to 1 yield a logarithmic distribution of the layers.

double end = textureSize - 1;

double range = (int)(log(end - 1.0)/log(2.0));

double start = end - range;

data[0] = 0;

for (int i = 4 ; i < 4 * textureSize ; i += 4)

{

 data[i] = (unsigned char)(csMin((1 - logValue) * i / 4 + logValue

 * ((log(pow(2.0, start) * (i / 4.0)) / log(2.0) - start) * end /

 range) , end) * 255 / end);

}

Section 10

Excerpt from the lighting shader that applies the diffuse term from the Blinn-Phong shading

model for opaque objects and the self-shadowing term for translucent ones.

LightSpaceWorld lightSpace;

lightSpace.Init (i, positionW);

shadow.Init (l, shadowMapCoords[l], lightDir[l].w);

float3 lightDiffuse = lightProps.colorDiffuse[i];

half shadowFactor = shadow.GetVisibility();

Light light = GetCurrentLight (lightSpace, i);

float4 lightAttenuationVec = lightProps.attenuationVec[i];

float3 d, s;

ComputeLight (lightSpace, light, myEyeToSurf, normal, shininess,

 lightDiffuse, lightProps.colorSpecular[i],

 lightAttenuationVec, shadowFactor, d, s);

// translucent objects do not have diffuse light

diffuseColor += shadowFactor * (surface.a != 1) + d * (surface.a ==

1);

specularColor += s;

Section 11

This section of the Appendix contains results regarding the way the split ratio modifies for

objects with different opacities and different number of layers. The two splitting method

tested at a 512x512 layers’ resolution were sum of absolute differences and cross-correlation

coefficient.

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

60

Split ratio (Table A.11.1) computed for a scene composed of a single tree viewed from above

(Figure A.11.1).

Figure A.11.1 Picture taken from Crystal Space

 Layers

Split method 1 16 32

Sum of absolute differences 1.0 0.4 0.2

Correlation coefficient 0.7 0.2 0.2

Table A.11.1 Split ratio variation for the scene in Figure A.11.1

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

61

Split ratio (Table A.11.2) computed for a scene composed of a single tree viewed from

sideways (Figure A.11.2).

Figure A.11.2 Picture taken from Crystal Space

 Layers

Split method 1 16 32

Sum of absolute differences 1.0 0.6 0.2

Cross-correlation 0.7 0.3 0.1

Table A.11.2 Split ratio variation for the scene in Figure A.11.2

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

62

Split ratio (Table A.11.3) computed for a scene composed of a grass model viewed from

above (Figure A.11.3).

Figure A.11.3 Picture taken from Crystal Space

 Layers

Split method 1 16 32

Sum of absolute differences 1.0 0.9 1.0

Cross-correlation 0.7 0.3 0.2

Table A.11.3 Split ratio variation for the scene in Figure A.11.3

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

63

Split ratio (Table A.11.4) computed for a scene composed of a grass model viewed from

sideways (Figure A.11.4).

Figure A.11.4 Picture taken from Crystal Space

 Layers

Split method 1 16 32

Sum of absolute differences 1.0 1.0 1.0

Cross-correlation 1.0 0.8 0.7

Table A.11.4 Split ratio variation for the scene in Figure A.11.4

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

64

Split ratio (Table A.11.5) computed for a scene composed of a dense grass model viewed from

above (Figure A.11.5).

Figure A.11.5 Picture taken from Crystal Space

 Layers

Split method 1 16 32

Sum of absolute differences 1.0 1.0 1.0

Cross-correlation 0.8 0.4 0.3

Table A.11.5 Split ratio variation for the scene in Figure A.11.5

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

65

Split ratio (Table A.11.6) computed for a scene composed of a dense grass model viewed from

sideways (Figure A.11.6).

Figure A.11.6 Picture taken from Crystal Space

 Layers

Split method 1 16 32

Sum of absolute differences 1.0 1.0 1.0

Cross-correlation 1.0 0.9 0.8

Table A.11.6 Split ratio variation for the scene in Figure A.11.6

Real-time volumetric shadows for dynamic rendering Alexandru Voicu

66

Section 12

Excerpt from the code computing the cross-correlation coefficient using only one iteration

over the input images:

// compute correlation coefficient:

double *means = new double[4 * persist.mrt];

double *squareSum = new double[4 * persist.mrt];

double *xy = new double[4 * persist.mrt];

double *correlations = new double[4 * persist.mrt];

for (int i = 0 ; i < 4 * persist.mrt ; i ++)

{

 means[i] = 0;

 squareSum[i] = 0;

 xy[i] = 0;

}

for (int layer = 0 ; layer < persist.mrt ; layer ++)

 for (int i = 0 ; i < persist.shadowMapRes ; i ++)

 for (int j = 0 ; j < persist.shadowMapRes ; j ++)

 for (int k = 0 ; k < 4 ; k ++)

 {

 uint8 x = data[layer][4 * (i + j * persist.shadowMapRes)+ k];

 means[4 * layer + k] += x;

 squareSum[4 * layer + k] += (x * x);

 if (4 * layer + k < 4 * persist.mrt - 1)

 {

 uint8 y = data[layer + (k + 1) / 4]

 [4 * (i + j * persist.shadowMapRes) + (k + 1) % 4];

 xy[4 * layer + k] += (x * y);

 }

 }

int n = persist.shadowMapRes * persist.shadowMapRes;

for (int i = 0 ; i < 4 * persist.mrt ; i ++)

 means[i] /= n;

for (int i = 0 ; i < 4 * persist.mrt - 1 ; i ++)

{

 correlations[i] = (xy[i] - means[i] * means[i + 1] * n) /

 sqrt((squareSum[i] - means[i] * means[i] * n) *

 (squareSum[i + 1] - means[i + 1] * means[i + 1] * n));

}

