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Abstract 
 

In order to produce realistic renderings for translucent objects, such as foliage or hair, self-

shadows have to be used.  

The first method that succeeds in casting real-time self-shadows is the Opacity Shadow Maps 

algorithm.  However this method suffers from severe layering artifacts unless a large number 

of opacity maps are used, but that causes the application to have only interactive and not real-

time performance.  

Deep Opacity Maps solve the layering artifacts problem by aligning the opacity maps with the 

shape of the geometry as seen from the light’s perspective. The downfall of this method is that 

only information about the front shape is provided and because of this the algorithm cannot 

work with multiple objects of various sizes.  

The novel method proposed in this thesis, Bounding Opacity Maps, improve Deep Opacity 

Maps by also giving information about the objects’ end position and shape. Furthermore an 

adaptive splitting scheme is proposed in order to better position the opacity maps based on the 

density of the objects in the scene. 
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1. Introduction 
 

The problem of rendering real-time realistic hair has been a significant topic of research in 

computer graphics for a long period of time, the first proposed solution going back to 1989.   

Early approaches, such as those of Kajiya and Kay [KK89] or Marschner [MJC03], 

implement hair rendering by using simple models that try to approximate the physical 

phenomena that occurs when a ray of light intersects a hair strand. These methods are both 

fast to compute, but they lack realistic rendering, because they do not take into account the 

influence hair strands have upon other hair strands, which leads to self-shadowing (Figure 

1.1). 

 

Figure 1.1 Picture produced in 3DS Max. Blonde hair rendered without (left) and with self-shadows (right). 

More recent methods include self-shadowing, which is done by volumetric shadows, a 

technique that can be used to realistically render other dynamic translucent objects, such as 

smoke, clouds or foliage, as well. Because this technique works with a variety of objects, not 

just hair, it has been a popular research matter, a lot of improvements being documented, 

since the first interactive implementation of volumetric shadows, in "Deep Shadow Maps" 

[LV00].  
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1.1 Offline implementations 

 

The first, and most realistic implementation of hair rendered with volumetric shadows was 

done by the film industry years ago, but by using offline implementations.  

Offline implementations produce highly realistic visuals at the cost of computational time, 

and so they are used only by applications that do not require real-time performance, such as 

those from the film industry: Maya, 3DS Max, Blender or RenderMan. 

Volumetric shadows are usually implemented in these applications by making use of volume 

rendering [L88], a technique that requires the input data to be organized in voxels. Therefore a 

3D structured grid is computed for each translucent object, the size of a voxel in the grid 

being determined by the required rendering quality, smaller voxels giving better visuals at 

higher computational times. 

Interactive implementations try to speed up volume rendering, by using hardware acceleration 

techniques supported by almost all modern video cards, such as rendering to texture, 3D 

texture or lookup textures. 

 

1.2 Interactive implementations 

 

The first interactive implementation of volumetric shadows was described in the paper "Deep 

Shadow Maps" [LV00], and it only slightly improves on volume rendering. Instead of 

rendering the scene using ray casting from the camera's point of view, a visibility function is 

first computed (Figure 1.1.1). The visibility function stores information regarding the amount 

of translucency each voxel has, as seen from the light's perspective. To find the alpha value of 

each voxel a volume rendering approach is used, in which rays are cast from the light's 

position and the change in transparency along each ray is stored in a texture, representing the 

visibility function. The overall complexity of this method, O(NlogN) is determined by the 

volume rendering part, which is implemented by first sorting the geometry according to the 

distance from the light's position and after that computing, in linear time, the intersection of 

each ray with the geometry. 

 
Figure 1.1.1. Picture taken from [LV00]. The visibility function is shown in the lower part of each image for the 

corresponding rays shoot from the camera and intersecting a central voxel. 
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A faster way of approximating volume rendering from the light's perspective, is using 

"Opacity Shadow Maps" [KN01]. Instead of sorting the geometry, the scene is rendered to 

texture multiple times (Figure 1.1.2), with different far clip values, and only the alpha value is 

stored in the corresponding render textures. The overall complexity is thus O(NM), where M 

is the number of textures used and N is the number of primitives to be rendered. Because 

rendering to texture is done using hardware acceleration for a small value of M the 

performance of Opacity Shadow Maps outperforms the one of Deep Shadow Maps, making it 

almost real-time on modern computers. However, in order to achieve realistic visuals a 

significant number of layers have to be used, so that the reference points give a good linear 

interpolation of the visibility function, making the performance only interactive. 

  
Figure 1.1.2. Picture taken from [KN01]. The opacity function, Ω(l), is computed for each pixel by using the 

information provided by each layer l. 

 

Along the years a significant number of papers have been written improving on these two 

fundamental approaches of doing volumetric shadows. 

Improvements of the way the visibility function is stored were proposed in "A Self-Shadow 

Algorithm for Dynamic Hair using Density Clustering" [MKBR04] and, more recently in 

"Fourier Opacity Mapping" [LB10]. The first approach uses clustering, k-means clustering in 

particular [Llo82], to choose the most significant pivot points, i.e. the points that best 

represent the geometry's changes in transparency. The second method approximates the 

visibility function using Fourier series, successfully minimizing the overall error between the 

approximation and the real function. 

However, finding better ways of approximating the visibility function gives better visuals, but 

it does not improve on the bottleneck of the algorithm, which is either the sorting, O(NlogN) 

in Deep Shadow Maps, or the multiple renders to texture, O(NM) in opacity shadow maps. If 

the geometry is already sorted, the multiple renders to texture, can be done in O(N+M) ~ 

O(N), by rendering only the geometry between two textures, or slices, and using additive 

blending and a 3D texture to compute and store the rest of the pivot points. This means that a 

fast sorting algorithm could be of benefit to both methods, a fact noticed by Eric Sintron and 

Ulf Assarsson who proposed two GPU based sorting algorithms, one developed using CUDA 

[CUDA07], "Fast Parallel GPU-Sorting Using a Hybrid Algorithm" [SA07] and one that uses 

geometry shaders, "Real-Time Approximate Sorting for Self Shadowing and Transparency in 
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Hair Rendering" [SA08]. Even though the performance of their sorting methods are better 

than the classic implementation of quick sort from C/C++ [QSORT], their algorithms rely on 

state of the art hardware which is still not present on the average computer nowadays. 

Approaches that do not require specific hardware, but improve sorting by taking into account 

some particular properties of the hair geometry, have been proposed in "Rendering real-time 

self-shadowed dynamic hair" [V10]. Although this approximate sorting has better time results 

than the quick sort from C/C++, the structures used require at least 3 times more memory than 

a normal rendering, which might not necessarily be available in a 3D rendering engine. 

Nevertheless, the methods that have the best ratio between performance and visuals are the 

ones that try to minimize the number of layers used. Such an approach is presented in "Deep 

Opacity Maps" [YK08] where the opacity maps are aligned with the shape of the objects from 

the scene as seen from the light’s perspective. However, because only information about the 

objects’ front shape is given and linear interpolation is used, sometimes the number of layers 

originally proposed by this method produces visual artifacts.   

 

2. Technical background 
 

In order to develop an easy to maintain and to improve volumetric shadow implementation, 

writing a render manager in a modern game engine seemed the best solution. Because full 

access to the source code was needed in order to develop such a plugin, an Open Source 

Project, or Free Software project, freely available under the GNU Lesser General Public 

License (GNU LGPL) was chosen.  

Crystal Space [CS07] is a project operating under the GNU Lesser licence, already at version 

2.1_001, so the code, the available manual [CSM08] and API [CSD08], are at a mature 

development stage. The full source code for this final project, with all its commits, can be 

found online at its own SVN branch [CS11].  

Crystal Space is a portable modular 3D SDK, and although it is mainly used for building 

different types of video applications and games, it can also be used for project that do not 

involve 3D content, but need a portable platform to develop C/C++ code. The project is 

written to run under a wide variety of hardware and software platforms, currently the 

following operating system being supported: 

 Microsoft® Windows (9x/NT/ME/2000/XP) 

 Unix® like Operating Systems (GNU Linux®, FreeBSD®, etc.) 

 Apple® Mac OS® X 

One of the most important facts about Crystal Space is that in order to achieve a high degree 

of modularity, all packages of components and libraries are built as plugins. Plugins have the 
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advantage that they are defined using just an interface and the implementation is hidden from 

the common user and can be easily updated at any time. Using such plugin libraries is also 

useful because they can be registered, loaded and queried only when and if needed. 

Here is a list of features available in Crystal Space, also used by the render manager: 

 Geometric utility library, covering a variety of mathematical notions, such as 2D and 

3D vectors, matrices, transforms and quaternions. 

 General utility library with template arrays, smart pointers, hash maps, object registry, 

plug-in manager or configuration files. 

 Shared Class Facility SCF, which makes the separation between the interface and the 

implementation and allows dynamically loadable modules.  

 Virtual file system and transparent support for ZIP files, allowing easy access to files 

on cross-platforms. 

 Event system. 

 Numerous types of mesh objects, of which only the most common used, genmesh, is 

currently supported by the new render manager. 

 Native widowing system using CEGUI, used for the graphical user interface. 

 Cross-platform hardware rendering using OpenGL, or a NULL renderer for 

applications like game servers. 

 Advanced material support, including CG shaders and textures assigned to custom 

created materials. 

 

2.1 The render manager 

 

The render manager is a plugin which controls the rendering loop in Crystal Space. It can also 

control various properties, such as post-processing effects, anti-aliasing, z-buffer test or the 

size of the rendering textures.  

The main steps of a render manager in Crystal Space are: 

 Get the geometry in the sector to be render. 

 Do the visibility culling, based on the camera's frustum. 

 Sort the mesh list based on the Z coordinate and assign in-context per-mesh indices, 

needed only when translucent objects are to be displayed. 

 Load and setup the shader variables arrays for each mesh. 

However, these are only the main steps for the default unshadowed render manager, steps like 

rendering to textures, not being included. The render managers available at this moment in 

Crystal Space are: unshadowed, deferred [H04] and shadowed using parallel split shadow 

maps [ZFSXS06]. The latter is the most similar render manager to the one that has been 

recently added for casting volumetric shadows.  
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2.2 Parallel Splits Shadow Maps 

 

Parallel split shadow maps [ZFSXS06], or cascaded shadow maps [D07], is a technique that 

splits the view frustum (Figure 2.2.1) into multiple depth layers in order to remove some of 

the visual artifacts common to the original shadows map method [SKWFH92].  

 

 

Figure 2.2.1. Picture taken from [ZFSXS06]. Splitting the viewing frustum, V, into m+1 planes, C0...m, which are 

later normalized to the [0, 1] interval, S0...m. 

Instead of generating just one high resolution shadow map, the multiple depth layers make it 

possible to create multiple shadow maps at a smaller resolution and containing just a part of 

the scene. 

Parallel splits shadow maps were already implemented in Crystal Space at the time this 

project was proposed, and the corresponding render manager contained a couple of additional 

features from the default render manager. These features are related to rendering to texture 

multiple times and splitting the view frustum into multiple depth layers, both also needed for 

the opacity shadow maps implementation. They are achieved by doing the following steps:  

 Calculate the split distances, lights' and objects' frustums. 

 Set up a new render view for each split and test the intersection of the lights' frustum 

with the objects' frustums. 

 Render to texture for each render view using a depth render manager, without 

shadows, light or color information, but just storing the distance from the light's 

position to the objects' position. 

 Load and setup the shader variables arrays that contain shadow information. 

 Render the scene using a slightly modified version of the default render manager, 

which casts shadows when the distance from the object to the light is bigger than the 

distance in the rendering texture of the corresponding projected point. 
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3. Opacity Shadow Maps 
 

Opacity shadow maps were introduced in Tae-Yong Kim and Ulrich Neumann's paper, 

"Opacity Shadow Maps", from 2001 [KN01] and it was the first method of obtaining 

volumetric shadows that had real-time performance at low level of details. 

In this method volumetric shadows are obtained by approximating the light transmittance 

inside a complex volume with a set of planar opacity maps. A volume represented by standard 

primitives (points, lines and polygons) is sliced and rendered, using graphics hardware, to 

each opacity map that stores alpha values rather than depth values. The alpha values are 

sampled in the maps enclosing each primitive point and interpolated for shadow computation 

[KN01]. 

Opacity shadow maps were not already implemented in Crystal Space at the time this project 

was proposed, so such an implementation had to be done as a starting point for the novel 

algorithm proposed later on in this thesis.  

The main modifications done to the parallel split shadow maps implementation were:  

 The use of a different split scheme, a linear one as opposed to the existing logarithmic 

one. 

 Create opacity maps instead of depth maps, which involved both rendering the scene 

to texture based on alpha and not on depth, and using this information as opacity 

rather than occlusion when doing the final pass from the light's perspective. As an 

optimization, four different layers were rendered to a single texture using a 32-bit 

channel for each. 

The opacity shadow map render manger has the following steps: 

 Calculate the split distances, lights' and objects' frustums. 

 Set up a new render view for each split and test the intersection of the lights' frustum 

with the objects' frustums. 

 Render to texture for each render view using an opacity render manager, without 

shadows, light or color information and without sorting, but just storing the additive 

alpha component from objects. 

 Load and setup the shader variables arrays that contain shadow information. 

 Render the scene using a modified version of the default render manager, which 

renders shadows according to the information stored in the opacity shadow maps: if a 

point to be rendered is denser from the light's perspective then it will be rendered 

darker in the final scene. 
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3.1 A first implementation 

 

The first implementation of the opacity shadow map render manager consisted of splitting the 

scene into a predefined number of regions, using linear interpolation between the first and the 

last vertex belonging to any translucent object, i.e. having the alpha rendering priority in 

Crystal Space. 

The linear interpolation scheme (Figure 3.1.1.a) was chosen only for its simplicity, but it 

might not perform very well when having multiple translucent objects in the scene that are far 

apart, because many opacity maps would not split through any object and contain the same 

information. Other more advanced schemes are proposed in [KN01]: adaptive slicing when 

the structure of the objects is known beforehand (Figure 3.1.1.b) and if regions farther away 

from the light's position have decreasing variations in transparency, a non-linear slicing 

method could be used (Figure 3.1.1.c). 

 

Figure 3.1.1.Picture from [KN01] – Various slicing schemes: uniform linear slicing (a), density based slicing (b) 

and non-uniform slicing (c). 

In order to use the maps at their full capacity, i.e. have the objects rendered from the lights 

point of view cropped to a 2D bonding box (Figure 3.1.2.b and Figure 3.1.2.d), the frustums 

were build as in Parallel Split Shadow Maps [ZFSXS06]. Two axis aligned bounding boxes 

were used to compute the crop matrix: one for the objects that cast shadows and one for those 

that receive them. The crop matrix is then computed by constructing an axis aligned bonding 

box containing both the receivers and casters. The final light's view-projection transformation 

matrix for the current split is lightViewMatrix * lightProjMatrix * cropMatrix 

[ZSN07]. 

 

Figure 3.1.2. Picture from Crystal Space. Different opacity shadow maps. Scene rendered without using the 

whole capacity of the maps, when light is at distance 10 (a) and 20 (c). Scene rendered using bounding boxes for 

cropping when light is at distance 10 (b) and 20 (d). 
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After setting up the light's view-projection transformation matrix a new render view is created 

and associated to a context which renders to texture the data contained in the view-projection 

matrix, building an opacity shadow map. Then these maps are given to a later rendering pass 

which computes the final shadow by finding for each point the neighbouring maps and then 

linearly interpolating the values obtained by projecting the point on these two maps.  

 

3.2 Limitations 

 

The limitations of the first implementation of opacity shadow maps lie in the small number of 

layers that are created and passed to the final shader, due to the following two causes.  

Firstly, even though a map stores information only in one channel, a texture with 4 channels is 

created for each such map, resulting in using 4 times more memory than actually required. 

Secondly, the maps are passed to the final shader as an array of textures, which can only be 

indexed by constants and not by variables, resulting in the registration of the whole textures 

array, even though only two maps are used for a certain point. Furthermore, hardware 

limitations do not allow registering more than 16 such textures on the video card on which the 

implementation was developed and tested, NVIDIA GeForce GT 335M. 

Because only such a small number of maps can be used, this first implementation suffers from 

severe visual artifacts (Figure 3.2.1). These artifacts are due to the fact that some points are 

present in one of the neighbouring maps, but not the other. 

 

Figure 3.2.1 Picture from Crystal Space. Due to the small number of opacity shadow maps diagonal artifacts can 

be seen. 
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A possible solution for removing the layering artifacts is increasing the number of opacity 

shadow maps, as show in Figure 3.2.2 from [YK08]. 

 

Figure 3.2.2 Picture from [YK08]. Removing Opacity Shadow Maps’ visual artifacts by increasing the number 

of layers from 16 (a) to 128 (b). 

Various approaches that try to minimize both the number of textures created and passed to the 

final shader and the time it takes to compute them have been added to this first 

implementation. 

 

3.3 Using all available texture channels 

 

A first optimization consisted of reducing the number of textures used, by storing information 

in the three color channels as well as the alpha channel. OpenGL uses blending functions 

[OGL97] in order to compute the final value of a channel, using the glBlendFunc: 

void glBlendFunc(GLenum  sfactor,  GLenum  dfactor); 

having the output definied as: 

R = sfactor * Rs + dfactor * Rd; 

G = sfactor * Gs + dfactor * Gd; 

B = sfactor * Bs + dfactor * Bd; 

where (Rs, Gs, Bs) is the source color (object being drawn), and (Rd, Gd, Bd) is the 

destination color (color already in the framebuffer). 

The possible values for sfactor and dfactor are presented in Table 3.3.1. 
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Factor Name Computed factor 
GL_ZERO 0 

GL_ONE 1 

GL_SRC_ALPHA As 

GL_ONE_MINUS_SRC_ALPHA 1 - As 

GL_DST_ALPHA Ad 

GL_ONE_MINUS_DST_ALPHA 1 - Ad 

GL_CONSTANT_ALPHA Ac 

GL_ONE_MINUS_CONSTANT_ALPHA 1 - Ac 

GL_SRC_COLOR (Rs, Gs, Bs) 

GL_ONE_MINUS_SRC_COLOR (1 - Rs, 1 - Gs, 1 - Bs) 

GL_DST_COLOR (Rd, Gd, Bd) 

GL_ONE_MINUS_DST_COLOR (1 - Rd, 1 - Gd, 1 - Bd) 

GL_CONSTANT_COLOR (Rc, Gc, Bc) 

GL_ONE_MINUS_CONSTANT_COLOR (1 - Rc, 1 - Gc, 1 - Bc) 

GL_SRC_ALPHA_SATURATE min(As, 1 - Ad) 
 

Table 3.3.1 List of possible values for source and destination factors. 

In Crystal Space the blending function is called indirectly by using various mixmodes on 

different meshes or shaders (Table 3.3.2). 

Name Definition Formula 
CS_FX_MULTIPLY CS_MIXMODE_BLEND(DSTCOLOR, 

ZERO) 

SRC*DST 

CS_FX_ADD CS_MIXMODE_BLEND(ONE, ONE) SRC+DST 

 

CS_FX_ALPHA 

CS_MIXMODE_BLEND(SRCALPHA, 

SRCALPHA_INV) | 

CS_MIXMODE_BLEND_ALPHA(ONE, 

SRCALPHA_INV) 

 

srcAlpha*SRC + (1-

srcAlpha)*DST 

CS_FX_TRANSPARENT CS_MIXMODE_BLEND(ZERO, ONE) DST 

CS_FX_DESTALPHAADD CS_MIXMODE_BLEND(DSTALPHA, 

ONE) 

(dstalpha)*SRC + DST 

CS_FX_SRCALPHAADD CS_MIXMODE_BLEND(SRCALPHA, 

ONE) 

(srcalpha)*SRC + DST 

 

CS_FX_PREMULTALPHA 

CS_MIXMODE_BLEND(ONE, 

SRCALPHA_INV) | 

CS_MIXMODE_BLEND_ALPHA(ONE, 

SRCALPHA_INV) 

 

SRC + DST*(1-srcalpha) 

 

Table 3.3.2 List of possible mixmodes' values in Crystal Space. 

At first the CS_FX_ALPHA mode was used, where the color channels are computed in the most 

common way, srcAlpha*SRC + (1-srcAlpha)*DST, and the alpha channel is SRC + 

DST*(1-srcalpha). The alpha channel gives the correct result for the opacity function, 

because for alpha we have SRC = srcalpha, thus having the following result in the 

framebuffer: srcalpha + DST*(1-srcalpha).  This result can also be obtained for the color 

channels either by setting SRC = 1 or by using CS_FX_PREMULTALPHA with SRC = srcalpha. 

Even though these two approaches manage to store the same information in each texture 

channel, they cannot be computed independently, because one channel cannot be set 
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transparent (srcAlpha = 1) without influencing the alpha channel, which would be SRC + 

DST*(1-srcalpha) = 1 + DST. 

The only way in which one channel can store a value in the framebuffer and all others be set 

to transparent is by using additive blending, CS_FX_ADD, as described in [ND05]. 

The problem when using CS_FX_ADD is that there is a linear increase, SRC+DST, instead of a 

logarithmic one SRC + DST*(1-srcalpha), but that can be fixed by using the exponential 

function when computing the final opacity [ND05]: 

half shadow = exp(-density);  

The four channels are computed in one pass of one shader by calculating the distance from the 

light's position, which is actually the camera position when rendering from the light's 

perspective, to each point to be displayed. The red channel contains opacity information only 

about the first quarter of geometry, the blue channel about half of the geometry, the green 

three quarters and the alpha contains opacity data for all available geometry (Appendix - 

Section 1): 

color = color * float4(index < 1, index < 2, index < 3, 1); 

 

However this shader only receives a part of the geometry in one call, obtained by setting the 

near and far z-plane to that particular split, which will be further divided into four parts inside 

the shader. 

Because the geometry is split using both the near and far z-plane, the render texture obtained 

contains information only about that particularly part of the geometry, and in order to 

compute the final opacity at a certain point the values from all precedent render textures has 

to be added (Appendix - Section 2): 

for (int j = 0 ; j < prevIndex ; j ++) 

previousMap += getMapValue(4 * (j + 1) - 1, prevPos); 

 

Just by using all four channels the number of available opacity shadow maps increased by 4, 

being in a 4:1 ratio with the number of available textures, which is 16 due to the hardware 

limitation mentioned in Section 3.2. 
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Figure 3.3.1 Picture from Crystal Space. Grass rendered using 16 render textures, yielding 64 opacity shadow 

maps. The visual artifacts are less visible than in Figure 3.2.1. 

 

3.4 Multiple render targets 

 

Multiple render targets [MRT04] is a feature of modern GPUs that allows a single pass of a 

shader to output information to more than one location (COLOR0), making it possible to render 

images to multiple render target textures at once. They were first introduced in the API of 

OpenGL 2.0 and Direct3D 9, but video cards supporting this feature appeared years later.   

The benefit of introducing this feature to the opacity shadow maps algorithm is that even 

more opacity maps can be generated in a single pass of a single shader, similar to how 4 maps 

were generated in a single pass when using all available channels, in Section 3.3.  

The only disadvantage of MRTs is that different GPUs support a different number of render 

targets and the code written on the GPU has to avoid calling or writing to invalid memory 

zones. For instance older video cards that do not support Direct3D 9 or OpenGL 2.0 have the 

number of MRTs set to 1, those that do support it have it set to 4 and the newer one that are 

capable of Direct3D 10 and OpenGL 3.0 support up to 8 MRTs [MRT04]. 

Because of this, three shaders are automatically generated to access and write to 1, 4 or 8 

MRT depending on the available number of MRT on the hardware the application is run. The 

way in which a rendering texture is selected is very similar to the way one of the four 

channels is selected in Section 3.1.2: by calculating the distance from the light's position to 

each point to be displayed. The closest vertices go to the first rendering target and further 

points are stored in the following render targets if available (Appendix - Section 3). 
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Thus for video cards supporting 8 MRTs one pass can generated up to 32 opacity maps in one 

go, giving a considerable speed-up, because 8 times less rendering contexts have to be 

created.  

 

3.5 Percentage-closer filtering  

 

The same techniques used to improve shadow maps can be applied to opacity shadow maps 

with good results, as well. This can lead to a significant speed-up because lower resolution 

maps can be used without introducing any significant visual artifacts.  

Because shadow map textures cannot be prefiltered to remove aliasing, like normal textures, 

multiple shadow map comparisons have to be made per pixel and averaged together, by a 

technique called percentage-closer filtering (PCF) [RSC87]. 

Although the original PCF algorithm as described in [RSC87] sampled the region to be 

shaded stochastically (randomly), by constructing a four-sided micropolygon (Figure 3.5.1.a), 

newer implementations [BP04] use a 4x4 texel sampler region (Figure 3.5.1.b). 

 

Figure 3. 5.1 Picture taken from [BP04]. Choosing a four-sided micropolygon (a) or a 4x4 texel region (b) as 

neighbourhood. 

A brute force method can be used to compute the 4x4 texel region average with good 

performance, mainly because most texture fetches are in the texture cache being close to one 

another [BP04] (Appendix - Section 4). 

Other ways of improving the opacity maps, such as point splatting [KN01] or variance 

shadow maps [DL06] have been taken into account, but because they do not benefit from 

native hardware acceleration they tend to be slow, so the PCF method was preferred. 
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4. Deep opacity maps 
 

Instead of trying to remove the visual artifacts of the Opacity Shadow Map method by 

increasing the number of maps, and at the same time decreasing the size of an artifact until it 

becomes too small to be noticed, Deep Opacity Maps [YK08] try to solve the problem by 

aligning the opacity maps with the hair geometry (Figure 4.1). 

 

Figure 4.1 Picture taken from [YK08]. Opacity Shadow Maps with 16 layers (a), with 128 layers (b) and Deep 

Opacity Maps with only 4 layers (c). 

The deep opacity maps method combines shadow mapping [SKWFH92] and opacity shadow 

maps [KN01] to give a better distribution of the opacity layers. In a first render pass the scene 

is drawn from the light's perspective and only information about depth is stored, by a regular 

shadow mapping technique. A second rendering pass constructs the opacity maps by doing a 

linear splitting, similar to the Opacity Shadow Map [KN01] technique, but which uses an 

offset equal to the value read from the shadow map generated in the previous pass (Figure 

4.2). 

 

Figure 4.2 Picture taken from [YK08]. Opacity Shadow Maps use linear interpolation (a), while Deep Opacity 

Maps (b) also use an offset read from the shadow map, so that they conform to the shape of the model. 
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Because the layer distribution in deep opacity maps guarantees that the direct illumination 

coming from the light source without being shadowed is captured correctly, by using the 

shadow map offset, a smaller number of opacity maps can be used to generate high quality 

shadows [YK08]. 

The biggest advantage of this new way of splitting is that it can still be done using common 

hardware and technologies, because it only involves reading and writing to textures inside a 

fragment shader. The hair volume can be divided into 𝐾 layers such that each layer lies from 

𝑧0 + 𝑑𝑘−1 to  𝑧0 + 𝑑𝑘 , where 𝑧0 is the depth read from the shadow map, 𝑑0 = 0, 𝑑𝑘−1 < 𝑑𝑘  

and 1 ≤ 𝑘 ≤ 𝐾. Furthermore the layer size does not have to be the same, i.e. 𝑑𝑘 − 𝑑𝑘−1 ≠

𝑑𝑘−1 − 𝑑𝑘−2, and even though the same 𝑑𝑘values are used for each pixel, 𝑧0 varies by pixel, 

so the layers take the shape of the geometry model in a linear splitting distribution.  

Figure 4.3 shows how Deep Opacity Maps remove layering artifacts as compared to the 

Opacity Shadow Maps on the translucent grass model from Crystal Space. 

 

Figure 4.3 Picture from Crystal Space. Opacity Shadow Maps with 64 layers (a) and layering artifact free Deep 

Opacity Maps with 16 layers (b). 

 

4.1 Limitations 

 

Even though Deep Opacity Maps do not require as many layers as Opacity Shadow Maps to 

render high quality shadows, just 3 layers, the number typically used in [YK08], is not quite 

enough for cluster geometry (Figure 4.1.1). 
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Figure 4.1.1 Picture from [YK08]. Only 3 layers at a low resolution (a) do not produce high quality shadows, so 

either the number of layers has to be increased (b) or the map's resolution (c). 

Because, when supported, multiple render targets [MRT04] represent a fast way of generating 

up to 32 opacity maps (Section 3.4), a basic scheme for controlling the visual quality of 

shadows, while roughly maintaining the same performance, has been developed for the 

current implementation. 

The maximum number of supported multiple render targets is used to generate as many layers 

as possible in a single rendering pass. Thus newer hardware gives higher quality shadows, 

while older video cards, which only use one render target, and still one rendering pass, 

produce 4 layers and lower quality shadows. However, the performance tends to stay the same 

because the number of rendering passes used to generate the Deep Opacity Maps remains the 

same. 

Moreover, if the scene to be rendered does not actually require more than a few layers, there 

is no geometry clustering, the number of multiple render targets used can be forced to a 

certain value via the scene configuration file.  

Another problem with Deep Opacity Maps is that although the initial offset for linear splitting 

is clearly specified for every point, there is no information regarding where the splitting 

should stop. This can either lead to visual artifacts or to an inefficient usage of the opacity 

maps. The solution preferred in [YK08], that the last layer will contain all the remaining 

points, can lead to visual artifacts, similar to those from clustering (Figure 4.1.1), if the last 

layer begins too early (Figure 4.1.2.b). On the other hand if the splitting is chosen so that the 

last layer lies beyond the hair volume, poor usage of the opacity maps will occur, because not 

only the last layer would not contain any information at all, but the rest of the layers will 

contain information only in a small proportion (Figure 4.1.2.c). A solution to this problem is 

proposed further on in the current thesis (Section 5). 
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Figure 4.1.2 Modified picture from [YK08]. Standard linear splitting (a), splitting that ends too early (b) and 

splitting that contains all the hair volume (c). Choosing the end splitting points too near (b) results in the last 

layer having a lot of information, which produces visual artifacts. Choosing the splitting point too far (c) leads to 

a big part of the layers not containing any useful information (the green hashed region). 

 

4.2 Implementation details  

 

Even though the implementation of Deep Opacity Maps, required mainly adding another 

rendering pass to compute the shadow map and making sure the second rendering pass, which 

generates the layers, is called only one time, some other small optimizations were done in 

order to increase performance. 

One significant benefit of choosing a linear splitting scheme is that the exact position of the 

splitting points does not need to be stored explicitly, which would involve a costly transfer of 

an array from the main memory to the video memory. Furthermore, if the position of the 

splitting points can be determined in constant time, using linear interpolation, this means that 

any point within the splitting interval can be attributed to a corresponding splitting point, and 

thus layer, in constant time as well. 

Because only one rendering pass is used when generating the layers the whole hair volume is 

passed to the shader. Therefore each opacity map can be efficiently created so that it contains 

information about every point until the splitting point and not only points which reside 

between the previous splitting point and the current one. This is done by adding the current 

rendered point, from the second rendering pass, to all previous rendering targets and not just 

the one determined by the splitting point (Appendix - Section 5). The advantage of this is that 

when computing the final opacity value for a certain point all the information needed is stored 

in just one opacity map and not divided among several, like in the case of Opacity Shadow 

Maps, so no additional texture lookups have to be done for previous layers. 

A regular depth map couldn't be used for the first rendering pass due to the fact that this map 

needs to be accessed like a regular texture, not a shadow map, which is impossible to do on a 
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depth map [tex2D]. Instead the depth information was written to a single 32 bit channel of a 

128 RGBA texture, which was accurate enough for doing the linear interpolation for deep 

opacity maps without noticeable visual artifacts. 

As a consequence of the fact that neither searching for the linear splitting scheme, nor adding 

information from previous layers is required, no for statements have been used in the vertex 

or fragment programs, which made the code optimal and compatible with older hardware as 

well. In order to further increase performance, all conditional branches were avoided, and 

variables having values based on conditions were used instead. 

 

5. Bounding opacity maps 
 

Because Deep Opacity Maps do not give any information about the end splitting points either 

visual artifacts or a poor usage of the opacity maps can occurs, as described in Section 4.1. 

Furthermore, if the layers are built by only taking into account the depth map, i.e. the shape of 

the object as seen from the light's perspective, they only follow the initial light distribution, as 

it enters the object. For instance, the layers obtained using Deep Opacity Maps would follow 

the distribution shown in Figure 5.1.b, which does not correspond to the way in which the 

light distribution occurs in the real world Figure 5.1.c. 

 

 

Figure 5.1 A translucent full sphere as seen in real-life (a), the distribution of layers when using Deep Opacity 

Maps (b) and the way the light is distributed in real-life (c). 

Moreover, the example illustrated in Figure 5.1 is not a particular case, the light distribution 

following the shape of the object for other translucent real world objects, as can be seen in 

Figure 5.2 and Figure 5.3. 
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Figure 5.2 Real-life lighting of blonde hair (a) and the corresponding layers and light distribution (b). It can be 

observed that the layers and the light distribution follow the shape of the object.  

By computing an extra depth map, in which depth information about the furthest away points 

is given, instead of the closest ones, the limitation of Deep Opacity Maps regarding the lack 

of information for the end splitting points is solved, and more important the layers follow the 

light's distribution in real-life.  

The novel solution proposed in the current thesis is named Bounding Opacity Maps and 

achieves a layering following the light distribution in real-life by interpolating the values from 

the two depth maps when choosing the splitting points. 

Because the same technologies are used as in Deep Opacity Maps, the splitting can still be 

done using common hardware and technologies and it still benefits of hardware acceleration.

 

Figure 5.3 Real-life lighting of a tree (a) and the corresponding layers and light distribution (b). It can be 

observed that the layers and the light distribution follow the shape of the object.  
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The geometry can be divided into 𝐾  layers such that each layer lies from 𝑧0 + 𝑑𝑘−1  to  

𝑧0 + 𝑑𝑘 , where 𝑧0 is the depth read from the first depth map, 𝑑0 = 0, 𝑑𝑘−1 < 𝑑𝑘 , 1 ≤ 𝑘 ≤ 𝐾 

and 𝑑𝐾 = 𝑧1, where 𝑧1 is the depth read from the second depth map. Furthermore, the layer 

size is not the same for different zones in a layer because the difference between 𝑧0 and 𝑧1 is 

not constant. As part of the first implementation the interpolation between 𝑧0 and 𝑧1 was a 

linear one, meaning that 𝑑𝑘 − 𝑑𝑘−1 = 𝑑𝑘−1 − 𝑑𝑘−2, but other splitting schemes can be used 

as well, as shown in Section 5.2. 

1. init: 

2.   geometry := load_scene('scene.txt') 

 

3. render_loop: 

4.   start_depth_map := render_pass(geometry) 

5.   end_depth_map := render_pass(geometry) 

6.   render_textures := render_pass(start_depth_map, end_depth_map, 

geometry) 

7.   render_scene(render_textures, start_depth_map, end_depth_map, 

geometry) 

 

Algorithm 5.1 A basic algorithm for Bounding Opacity Maps. The only difference from Deep Opacity Maps is 

line 5 in which the end splitting points are computed. There are a total of three render passes that compute the 

start splitting points (line 4), the end splitting points (line 5) and the opacity layers (line 6). The information 

provided by these render passes is used to render the final scene on line 7. 

Although the Bounding Opacity Maps algorithm (Algorithm 5.1) is only slightly different 

from the Deep Opacity Maps one, both the difference in splitting (Figure 5.4) and in 

rendering (Figure 5.5) are quite substantial. 

 

Figure 5.4 Difference in splitting between Deep Opacity Maps (a) and Bounding Opacity Maps (b) when using 

16 layers - first layer corresponds to light green and the last layer to black. It can be seen that because the end 

splitting points are not specified in Deep Opacity Maps the layers do not cover the whole length of the object 

(the final color is not black as in (b)). 
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Figure 5.5 Difference in rendering between Deep Opacity Maps (a) and Bounding Opacity Maps (b) when using 

16 layers. Because Deep Opacity Maps do not specify the end splitting points some grass strands (from the red 

circle), corresponding to the last layer, are given false shadow information. 

 

5.1 Implementation details  

 

The implementation of Bounding Opacity Maps is very similar to the one of Deep Opacity 

Maps, the main difference is that two depth maps, instead of just one, are computed. In order 

to compute the second depth map another rendering pass was added, but the time lost with 

this extra pass was recovered by the fact that even fewer layers than in Deep Opacity Maps 

can be used without losing any details. The correct visual appearance is guaranteed even with 

just a few layers by the fact that the maps now follow the light's distribution in real-life. 

As stated in Section 5 the second depth map contains information about the depth calculated 

from the light's position where objects end. In OpenGL this can be achieved directly by 

calling the glDepthFunc function with GL_GREATER / GL_GEQUAL instead of GL_LESS 

/ GL_LEQUAL [OGL97]. This sets the zbuffer with new data (depth value and color 

information) only if the incoming depth is greater / greater or equal than the stored depth 

value.  However because this way of setting the zbuffer is quite specific to OpenGL and there 

were not any straight forward ways of copying this behaviour in Crystal Space, another more 

general method was used instead.  

This general way is a mathematical solution and it consists of swapping the value of the near 

plane with the one of the far plane when computing the projection matrix from the light's 

perspective in the second rendering pass. By doing this the direction of the Z axis is reverted, 

so every object in the scene looks as if it were mirrored (Figure 5.1.1). The useful fact about 

the mirrored scene is that the closest points from the light correspond to the farthest points 

from the light from the mirrored scene, and this is valid both ways. Due to this property the 

same code from the first rendering pass in Deep Opacity Maps, which computed the depth of 

the points closest to the light's position, could be used to compute the furthest points from the 
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light's position in the second rendering pass from Bounding Opacity Maps. As a side note 

OpenGL has a specific easy way of swapping the near and far values by calling the function 

glDepthRange with 1 for the near value and 0 for the far one: "It is not necessary that 

nearVal be less than farVal. Reverse mappings such as nearVal=1, and farVal=0 are 

acceptable" [OGL97]. 

 

Figure 5.1.1 A scene where the light is at the origin and the light's direction corresponds to the positive Z 

direction (a) and its corresponding mirrored scene (b). 

The fact that both the start and the end position of objects in the scene are known, via the two 

depth maps, allows finding a precise position of the splitting points by doing an interpolation 

between the values stored in the depth maps (Appendix - Section 6).  

 

5.2 Splitting scheme 

 

Even though the most common splitting scheme is the linear one, the light distribution does 

not necessarily follow linear interpolation. If we were to look at the light's distribution on 

real-world translucent objects such as clouds, trees or hair we can observe that for a uniform 

shape and a constant, high alpha value the lighting caused by self-shadowing changes only at 

the very beginning of the object (Figure 5.2.1). 

Therefore depending on the density of the geometry or on the amount of translucency an 

object has, new shadow information may appear or not onto the next layer. In certain cases, 

like the one described above, only the first few layers have different information (Figure 

5.2.2), so a linear distribution of the layers is not a good option. A distribution that has 

multiple layers near the start splitting position, i.e. at the beginning at the object, and fewer as 

the layer position reaches the end splitting position would give better results.  
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Figure 5.2.1 Real-world photographs of clouds (a) and bushes (b). It can be observed that for these objects the 

lighting only changes at the very beginning of the object. 

 

Figure 5.2.2 Layers obtained using linear splitting on the grass scene. The last four layers contain almost the 

same information. 

 

5.2.1 Logarithmic splitting 

 

The logarithmic distribution has a slower increase rate and therefore produces a splitting that 

has a higher density of layers at the beginning of the object (Figure 5.2.3). And because there 

are more layers at the beginning of the object, fewer layers contain the same information 

(Figure 5.2.4). Obtaining layers that have different shadow information prevents artifacts like 

the ones shown in Figure 5.2.5.  

 

Figure 5.2.3 Comparison between linear and logarithmic distributions. Linear increase, blue, versus logarithmic 

increase, green (a), linear split (b) and logarithmic split (c).  
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Figure 5.2.4 Layers obtained using logarithmic splitting on the grass scene. Every layer adds new shadow 

information, i.e. is different from the previous one. 

 

Figure 5.2.5 Picture from Crystal Space. Difference in rendering when splitting using linear splitting (a) and 

logarithmic splitting (b). Linear splitting (a) produces incorrect self-shadows because most of the layers contain 

the same information (Figure 5.2.2). 

One disadvantage of using a non-linear splitting scheme is that the splitting positions cannot 

be computed without a lot of arithmetical instructions. This is caused by the fact that the range 

of the object is given in local coordinates from 0 to 1, where 0 corresponds to the beginning of 

the geometry and 1 to the end of it.  

Even though the interval [0, 1] could be used directly for linear interpolation, it is not a proper 

input interval for the logarithmic function, because the output interval would cover an infinite 

range from [-∞, 0] and wouldn't have the distribution shown in Figure 5.2.3.a. In order to 

obtain such a distribution the interval has to be converted first to a positive interval greater 

than 1, which covers a bigger range of values, say [1, N]. After the logarithmic function is 

applied another interval is output [0, log(N)], which has to be converted to [0, 1] once again.  

Therefore converting between intervals in the case of logarithmic splitting requires 

significantly more arithmetical instructions than linear splitting which only requires a division 

for finding a splitting position. However, this conversion can be done automatically if we use 

lookup textures [SL04]. 
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5.2.2 Lookup textures 

 

Lookup textures are usually RGBA 1D, 2D or 3D textures, in which a function having the   

[0, 1] input and output interval is encoded. For instance the logarithmic function is encoded 

by first converting the [0, 1] interval to [1, textureSize - 1], afterwards applying the 

logarithmic function which yields the [0, log(textureSize)] interval, which is finally converted 

to [0, textureSize - 1] (Appendix - Section 7). Because the texture's size is usually a power of 

2, due to compatibility reasons [CW04], the logarithmic function used was log2.  

The major advantage of using this technique is that the lookup texture is computed only once 

during the initialization stage, and afterwards it is used instead of the numerous arithmetic 

operations needed to convert the input and the output interval as well as applying the 

logarithmic function itself (Appendix - Section 8).  

 

5.2.3 Hybrid split 

 

Although the linear splitting scheme falls short for uniform shapes and a constant, high alpha 

value (Figure 5.2.1) and the logarithmic one does not work properly with objects that either 

have scattered geometry or a low alpha value (Figure 5.2.3.1), using one of the splitting 

scheme when the other falls short produces good results.  

 

Figure 5.2.3.1 Real-world photographs of clouds (a) and trees (b). It can be observed that for objects having a 

scattered geometry the lighting changes throughout the entire length of the object. 

Section 5.2.1 already describes how to use a logarithmic split when the linear split does not 

produce good enough results, however it can be the case that the layers obtained using linear 

splitting already give different shadow information, usually for scattered geometry or a low 

alpha value (Figure 5.2.3.2). Furthermore, in this case using logarithmic splitting would result 

in a fairly poor rendering, because the first layers would contain the same shadow information 

(Figure 5.2.3.3 and Figure 5.2.3.4). 
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Figure 5.2.3.2 Layers obtained using linear splitting on a scene containing a scattered tree. Every layer adds new 

shadow information, i.e. is the different from the previous one. 

 

Figure 5.2.3.3 Layers obtained using logarithmic splitting on a scene containing a scattered tree. The first four 

layers contain almost the same shadow information. 

 

Figure 5.2.3.4 Picture from Crystal Space. Difference in rendering when splitting using logarithmic splitting (a) 

and linear splitting (b). Logarithmic splitting (a) produces artifacts, the willow is incorrectly lit near the top, 

because most of the layers contain the same information (Figure 5.2.3.3). 

Even though neither of these two splitting scheme can be used for any type of object they 

complement each other, so when one scheme falls short the other can be used instead. Due to 

this property a hybrid splitting scheme has been proposed in the current thesis that is a mix of 

the linear and logarithmic splitting schemes.  

The hybrid splitting function is built by doing a linear interpolation based on a variable that 

sets the ratio between the linear and logarithmic splitting. This means that when the variable 

is close to 0 the linear split is used, and when it is near 1 the logarithmic split is chosen 

instead (Appendix - Section 9). 

Many interactive approaches, such as the ones presented in Section 1.2, find the best splitting 

points by first computing the visibility function, which is usually done using ray casting. 

However such a technique only gives interactive results, unless GPGPU capable hardware is 

used in which case Opacity Shadow Maps with a high number of maps (128) could also be 

used offering good visuals and performance.  
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The novel idea of this thesis is to determine an approximation of the visibility function for 

each ray by making use of the two contour maps and the opacity of the objects in the current 

scene. This is achieved by automatically determining the best ratio between the linear and 

logarithmic splitting from the hybrid splitting function. 

The criteria for choosing the best ratio for various scenes with objects varying in density and 

with a different number of layers was that each new layer should capture information that the 

previous one did not. 

Because the information that had to be measured was not contained in a single data, i.e. a 

single image, the concept of entropy [KK92] could not be used for the current problem. 

Instead ideas from computer vision regarding mutual information were applied [YG11]. 

For image registration, the mutual information between two images is computed using a 

similarity measure. Because each bounding opacity map contains the same objects, and 

therefore has the same shape, and only the transparency values differ, the image intensity is 

meaningful on a pixel by pixel basis. This means that simple similarity measures such as sum 

of absolute differences and correlation coefficient can be used.  

The sum of absolute differences is fast and simple to compute and it involves iterating 

through the two pictures and summing the absolute differences on a pixel by pixel basis. 

In the case of the correlation coefficient the following equation is evaluated: 

𝐶 =
  𝐼1 𝑥, 𝑦 − 𝐼1  𝑥,𝑦   𝐼2 𝑇 𝑥,𝑦  − 𝐼2

  𝑇 𝑥,𝑦   𝑥 ,𝑦

   𝐼1 𝑥,𝑦 − 𝐼1  𝑥,𝑦  
2

𝑥 ,𝑦   𝐼2 𝑇 𝑥,𝑦  − 𝐼2
  𝑇 𝑥,𝑦   

2

𝑥 ,𝑦

 

Equation 5.2.3.1 Defining the cross-correlation coefficient C 

Where 𝐼  (∙) is the mean intensity of image 𝐼. The above equation represents the ratio between 

the covariance of two images and the product of their standard deviation. The correlation has 

values on a scale ranging from [-1, 1] and it gives a linear indication of the similarity between 

images [YG11]. 

Even though the similarity measures presented above are usually used when trying to 

maximize the mutual information between images, they can also be successfully applied in 

order to minimize this mutual information. For instance in the case of the correlation 

coefficient a value close to 0 means that the two input images are different. Therefore the 

smallest value generated from different split ratios of the hybrid function corresponds to the 

value for which the layers have the least mutual information, so each new layer adds new 

information. 

The way in which the split ratio varies for the two similarity measures, the sum of absolute 

differences and the correlation coefficient, according to the number of layers, the position of 

the light and the density of the translucent objects are presented in Appendix – Section 11.  
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Both similarity measures tend to have the same variation: the splitting becomes more linear 

when either the object is sparser (Figure 5.2.3.5) or the number of layers increases (Figure 

5.2.3.6). These two variations can be intuitively explained.  

 

Figure 5.2.3.5 Plot generated using gnuplot. Sparser objects map better to linear splitting (the splitting ratio is 

closer to 0) and denser ones perform better when logarithmic splitting is used (the splitting ratio is closer to 1) 

The fact that sparser objects map better to linear splitting and that denser ones perform better 

when logarithmic splitting is used has already been described in Section 5.2. The objects’ 

density has been altered by either creating sparser versions of the same model or changing the 

way the light hits the object’s surface from sideways to above. For instance, the grass model 

presented in Appendix – Section 11 appears sparser when viewed from above and denser 

when viewed sideways.   

 

Figure 5.2.3.6 Plot generated using gnuplot. Splitting tends to be more linear (the splitting ratio is closer to 0) 

when the number of layers increases. 



Real-time volumetric shadows for dynamic rendering Alexandru Voicu 

 

38  

 

In the second case the splitting tends to be more linear when the number of layers increases 

because linear splitting with more layers has the first pivot points similar to a logarithmic 

distribution with fewer layers (Figure 5.2.3.7). This means that in both cases (Figure 

5.2.3.7.a) and (Figure 5.2.3.7.b) the splitting tries to adapt itself to capture the most 

significant details of the object situated usually at the beginning and if further splits are 

available they are used to capture other possible details along the object as well.  

 

Figure 5.2.3.7 Comparison between linear and logarithmic distributions. Linear splitting with more layers (a) 

has the first pivot points similar to a logarithmic distribution with fewer layers (b). 

Although the two similarity measures follow the same split ratio distribution the cross-

correlation covers a wider range of values making it converge faster to the values that are to 

be expected from Section 5.2. This happens because the cross-correlation not only takes into 

account the difference of intensities between pixels, but their covariance as well. The problem 

with the sum of absolute differences is that the information provided by the variance is not 

used at all. Therefore a split ratio that produces a higher sum of absolute differences is chosen 

each time, without taking into account if the variance increases as well. This can lead to layers 

having a big covariance which is not desirable because each new layer should add new 

information. By doing this, cases where a few layers bring a lot of new information and the 

rest contain roughly the same data can be avoided. 

Because the comparison between layers, or images, is done at a global level the render 

textures have to be readback from the GPU and processed on the CPU. The amount needed to 

do a readback, even when using optimized texture formats for doing such an operation, 

exceeds the real-time limits so this operation is not done on a frame by frame basis. However, 

this does not represent a limitation because there is no need to recompute the splitting ratio 

unless the density of the objects in the scene significantly changes. This can only happen 

when the object changes its density or the light hits the object’s surface from an entirely 

different angle, both of which hardly ever occur.  

It is important to note that the algorithm presented so far does not find the optimal number of 

layers and splitting ratio, but only finds the best splitting ratio for a given number of layers. It 

does this by choosing a more logarithmic split when fewer layers are available and a more 

linear one when a bigger number of layers is specified so that the significant details from the 

beginning of the object are always captured (Figure 5.2.3.7).  

The reason why the number of layers has not been automatically chosen is that even though 

adding new layers increases the details in rendering it also always increases the cross-
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correlation coefficient because the images become closer to one-another and therefore more 

correlated. Because there is a monotonic increase of the correlation-coefficient while 

increasing the number of layers (Table 5.2.3.1), the minimum or the maximum coefficient 

could not be used in the way it was used for choosing the optimal splitting ratio.   

                        Scene 

Layers 

Trees Grass Dense grass 

Correlation FPS Correlation FPS Correlation FPS 

4 0.66 98 0.72 65 0.72 49 

8 0.83 96 0.86 64 0.86 47 

16 0.92 80 0.93 53 0.93 43 

32 0.96 60 0.96 40 0.96 34 
 

Table 5.2.3.1 The variance between cross-correlation coefficient and performance (measured in FPS) on 

different scenes from Crystal Space (Appendix – Section 11). Increasing the number of layers causes a 

monotonic increase of the cross-correlation coefficient and a monotonic decrease in performance.  

The only way of choosing the best number of layers is by computing a ratio between the 

rendering quality and the performance of the program. Even though the results from Table 

5.2.3.1 show a significant decrease in performance between the best and the worst FPS 

(frames-per-second), with an average of 50%, there is no straight-forward way to 

automatically measure the rendering quality of a scene. For this reason and because this is a 

real-time rendering engine designed for possible future games, choosing the optimal number 

of layers is done by the user. This can be done via a video graphic setting menu that sets the 

maximum number of multiple render targets from the values supported by the graphics card. 

Algorithm 5.2.3.1 illustrates how a splitting scheme can be introduced to the general 

Bounding Opacity Maps algorithm (Algorithm 5.1) 

1.  init: 

2.    split_ratio := 0.0 

3.    best_split := 0.0 

4.    geometry := load_scene('scene_file.txt') 

5.    recompute_split_ratio := true 

 

6.  render_loop: 

7.    start_depth_map : = render_pass(geometry) 

8.    end_depth_map : = render_pass(geometry) 

9.    render_textures : = render_pass(split_ratio, start_depth_map, 

end_depth_map, geometry) 

10.   IF recompute_split_ratio = true 

11.     best_split := process_image(split_ratio, best_split, 

render_textures, geometry)   

12.   END 

13.   render_scene(split_ratio, render_textures, start_depth_map,   

end_depth_map, geometry) 

14.   IF recompute_split_ratio 

15.     split_ratio := split_ratio + 0.1  

16.   END 

17.   IF split_ratio = 1.1 

18.     split_ratio := best_split 

19.     recompute_split_ratio := false 
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20.   END 

 

21.  needs_recompute: 

22.    recompute_split_ratio := true 

23.    split_ratio := 0.0 

 

Algorithm 5.2.3.1 Integrating a splitting scheme in the Bounding Opacity Maps method. When the hybrid split 

ratio needs to be updated, either the needs_recompute (line 21) function or the init (line 1) one have been 

called, the best split ratio is determined by the CPU implemented process_image (line 11) method. The 

optimal split ratio is determined from values between 0.0 and 1.0 increased by 0.1 (line 15), in a timespan of 11 

frames (line 17). 

 

5.2.4 Computing cross-correlation  

 

Both algorithms that choose the optimal split ratio work with entire images and because of 

that they are implemented on CPU. In order to get the render textures back from the GPU 

several readbacks are done when the split ratio needs to be recomputed. Because readbacks 

are quite costly, the computation of the optimal split can become a bottleneck unless the sum 

of absolute differences or the cross-correlation coefficient are efficiently calculated, i.e. 

iterating only once on the given images. The sum of absolute difference is computed using 

only one iteration through the data set by its definition, but according to Equation 5.2.3.1 it 

may appear that the cross-correlation needs several iterations. For instance the mean and the 

covariance from this equation might be computed each using a separate iteration and another 

final iteration can be added to compute the final division. 

However, according to [GZY11] such equations, regarding cross-correlation or moments, can 

be done using only one pass if we consider the mean as a constant and simplify it from the 

sum. For instance, Equation 5.2.3.1 can be split into three independent parts: 

𝐸1 =   𝐼1 𝑥,𝑦 − 𝐼1  𝑥,𝑦   𝐼2 𝑥,𝑦 − 𝐼2
  𝑥, 𝑦  

𝑥 ,𝑦

 

𝐸2 =   𝐼1 𝑥,𝑦 − 𝐼1  𝑥,𝑦  
2

𝑥 ,𝑦

 

𝐸3 =   𝐼2 𝑥,𝑦 − 𝐼2
  𝑥, 𝑦  

2

𝑥 ,𝑦

 

And because in this case 𝑇 𝑥, 𝑦 =   𝑥,𝑦  the cross-correlation coefficient can be defined as: 

𝐶 =
𝐸1

 𝐸2 ∙ 𝐸3

 

Using these definitions 𝐸1, 𝐸2 and 𝐸3 still need the mean of the image, 𝐼  (∙), in order to be 

computed. Applying the observation from [GZY11] 𝐸1 becomes: 
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𝐸1 =   𝐼1 𝑥,𝑦 − 𝐼1  𝑥, 𝑦   𝐼2 𝑥, 𝑦 − 𝐼2
  𝑥,𝑦  

𝑥 ,𝑦

=   𝐼1 𝑥,𝑦 ∙ 𝐼2 𝑥,𝑦 − 𝐼1 𝑥,𝑦 ∙ 𝐼2
  𝑥,𝑦 −  𝐼1  𝑥,𝑦 ∙ 𝐼2 𝑥,𝑦 + 𝐼1  𝑥,𝑦 ∙ 𝐼2

  𝑥,𝑦  

𝑥 ,𝑦

=  𝐼1 𝑥, 𝑦 ∙ 𝐼2 𝑥,𝑦 

𝑥 ,𝑦

− 𝐼2
  𝑥,𝑦 ∙ 𝐼1 𝑥,𝑦 −

𝑥 ,𝑦

𝐼1  𝑥,𝑦 ∙ 𝐼2 𝑥,𝑦 + 𝑁 ∙

𝑥 ,𝑦

𝐼1  𝑥,𝑦 ∙ 𝐼2
  𝑥,𝑦  

Where 𝑁 is the image size and because  

 𝐼1 𝑥,𝑦 =  𝑁 ∙ 𝐼1  𝑥,𝑦 

𝑥 ,𝑦

 

The term 𝐸1 can be further simplified: 

𝐸1 =

=  𝐼1 𝑥, 𝑦 ∙ 𝐼2 𝑥,𝑦 

𝑥 ,𝑦

− 𝑁 ∙ 𝐼2
  𝑥,𝑦 ∙ 𝐼1  𝑥,𝑦 − 𝑁 ∙ 𝐼1  𝑥,𝑦 ∙ 𝐼2

  𝑥,𝑦 + 𝑁 ∙ 𝐼1  𝑥,𝑦 ∙ 𝐼2
  𝑥,𝑦 

=  𝐼1 𝑥, 𝑦 ∙ 𝐼2 𝑥,𝑦 

𝑥 ,𝑦

− 𝑁 ∙ 𝐼1  𝑥,𝑦 ∙ 𝐼2
  𝑥,𝑦  

In the above form 𝐸1 can be calculated using only one loop over the image. Using the same 

idea 𝐸2 can be simplified as well: 

𝐸2 =   𝐼1 𝑥, 𝑦 − 𝐼1  𝑥,𝑦  
2

𝑥 ,𝑦

=   𝐼1 𝑥,𝑦 2 − 2 ∙ 𝐼1 𝑥,𝑦 ∙ 𝐼1  𝑥,𝑦 + 𝐼1  𝑥,𝑦 2 

𝑥 ,𝑦

=  𝐼1 𝑥,𝑦 2 − 2 ∙ 𝐼1 𝑥,𝑦 ∙ 𝐼1  𝑥,𝑦 +  𝐼1  𝑥,𝑦 2

𝑥 ,𝑦𝑥 ,𝑦𝑥 ,𝑦

=  𝐼1 𝑥, 𝑦 2 − 2 ∙ 𝐼1  𝑥,𝑦  𝐼1 𝑥,𝑦 + 𝐼1  𝑥,𝑦 2  1

𝑥 ,𝑦𝑥 ,𝑦𝑥 ,𝑦

= 𝐼1 𝑥,𝑦 2 − 2 ∙ 𝑁 ∙ 𝐼1  𝑥,𝑦 ∙ 𝐼1  𝑥, 𝑦 

𝑥 ,𝑦

+ 𝑁 ∙ 𝐼1  𝑥, 𝑦 2 =  𝐼1 𝑥,𝑦 2 − 𝑁 ∙ 𝐼1  𝑥,𝑦 2

𝑥 ,𝑦

 

Similarly 𝐸3 can be rewritten as: 

𝐸3 =  𝐼2 𝑥, 𝑦 2 − 𝑁 ∙ 𝐼2
  𝑥,𝑦 2

𝑥 ,𝑦

 

Using 𝐸1 , 𝐸2  and 𝐸3 ,  the cross-correlation can be computed in only one iteration over the 

images retrieved from the GPU in which the following terms are calculated (Appendix – 

Section 12):  

 𝐼1 𝑥, 𝑦 ∙ 𝐼2 𝑥,𝑦 

𝑥 ,𝑦

, 𝐼1  𝑥,𝑦 , 𝐼2
  𝑥,𝑦 , 𝐼1 𝑥,𝑦 2 and  

𝑥 ,𝑦

 𝐼2 𝑥,𝑦 2

𝑥 ,𝑦
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5.3 Adding common lighting effects 

 

Because the techniques described so far only determine how the light contributes to the self-

shadowing of a translucent object, similar to the diffuse lighting term in the Blinn-Phong 

shading model [B77], the other terms had to be added as well.  

In the case of opaque objects all the terms from Blinn-Phong are applied, and for translucent 

objects the diffuse lighting is replaced by the information given by the self-shadowing 

technique (Appendix - Section 10).  

 

Figure 5.3.1 Picture from Crystal Space. Difference in rendering when using Blinn-Phong terms for opaque 

objects (b) and when using only self-shadowing information from translucent objects (a). 

Moreover, opaque objects had to be introduced in the computation of the shadow maps. 

However, because a depth shadow map was already used in computing the starting splitting 

points for translucent objects, making opaque objects cast shadows was easily introduced by 

adding the opaque objects in the already existing depth shadow map. Even though this depth 

map could have been used directly for testing if an object is shadowed or not, the depth 

information was also given to the shadow opacity maps so that all objects would cast shadows 

using the same technique (Figure 5.3.2). 
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Figure 5.3.2 Picture from Crystal Space. Difference in rendering when opaque objects, the trees’ trunk and 

branches, do not cast shadows (a) and do cast shadows (b). 

 

5.4 Limitations 

 

The limitations of the bounding opacity maps are given by the splitting methods used, either 

linear, logarithmic or a hybrid of the first two.  

A limitation is that only one splitting function is chosen for the whole scene, and this is 

caused by the fact that the splitting ratio is determined using entire images and not only pixels 

or regions. Because of this a scene containing a dense object and a sparse one will be treated 

as a scene which contains an object which is neither dense nor sparse yielding an inadequate 

rendering. 

In the case of some objects that change their density, like smoke for instance which is a 

translucent model frequently used in real-time applications such as games, the splitting ratio 

needs to be recomputed.  This computation involves texture readbacks and image processing 

both done on the CPU, in the current implementation, which makes the application turn from 

real-time to interactive for a couple of seconds. Furthermore the splitting ratio also has to be 

recomputed when the light changes its position and other models with different translucency 

levels are brought into the light’s perspective.  

A last limitation of the splitting method is related to the fact that the number of layers used 

has to be specified, via the number of available multiple render targets, by the user. This can 

lead to an inefficient usage of the hardware, by doing a lot more computations than are 

actually needed in order to produce the same rendering. A better method would be to 

determine the optimal number of layers and check if they are available on the hardware the 

application is running on. 
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6. Results & Performance 
 

In this section the main three algorithms presented and implemented in this thesis, Opacity 

Shadow Maps, Deep Opacity Maps and Bounding Opacity Maps are analyzed regarding their 

performance and visual aspect according to the number of layers used.   

The performance is measured in frames-per-second (FPS) using the average FPS provided by 

Fraps [FRAPS] benchmarking tool for a period of 60 seconds. The measures were taken on a 

Dell Alienware M11x [M11x] having the following hardware components: 

 Processor: Intel Pentium Dual-Core, 1.3 GHz 

 Memory: DDR3 SDRAM, 4 GB 

 Graphics: NVIDIA GT 335M, 1 GB 

Moreover the application was tested on the following software configuration: 

 Rendering resolution: 1024x768 

 Render target’s resolution: 512x512 

 Operating System: Windows 7 Home Premium, Service Pack 1 

 Compiler / IDE: Microsoft Visual Studio 2010 Professional, DebugWithDlls Win32. 

Because all three algorithms are GPU bound, they involve rendering the scene multiple times 

and almost no task is done on CPU, the GPU card had the most important contribution in the 

measurements taken. 

 

6.1 Opacity Shadow Maps 

 

As can be seen from Table 6.1.1 Opacity Shadow Maps represent a fast way of obtaining 

volumetric shadow maps, although they suffer from serious visual artifacts as described in 

Section 3.2 and Section 3.3. 

               Scene FPS 

Layers Trees Grass Dense grass 

4 147.58 137.53 107.76 

8 124.85 110.00 79.91 

16 86.68 73.87 59.53 

32 53.80 39.83 36.58 
 

Table 6.1.1 The variance between the number of layers used and the performance measured in FPS, for Opacity 

Shadow Maps. 

Whereas Deep Opacity Maps and Bounding Opacity Maps have entire maps for the start and 

the end splitting points, Opacity Shadow Maps only use one start splitting point and one end 

splitting point, which gives the algorithm a good performance, but poor rendering results. In 
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order to keep the Opacity Shadow Map implementation GPU bond, the start and the end 

splitting points were obtained by using bounding boxes and not iterating through entire 3D 

models.  

 

6.2 Deep Opacity Maps 

 

Deep Opacity Maps represent a compromise between performance and visual aspect, fixing 

the sever artifacts from Opacity Shadow Maps, while having a better FPS than Bounding 

Opacity Maps (Table 6.2.1). 

               Scene FPS 

Layers Trees Grass Dense grass 

4 112.10 77.38 70.53 

8 90.66 60.56 61.23 

16 63.96 47.93 41.85 

32 43.90 29.45 27.28 
 

Table 6.2.1 The variance between the number of layers used and the performance measured in FPS, for Deep 

Opacity Maps. 

 

6.3 Bounding Opacity Maps 

 

Even though Deep Opacity Maps might have a better performance than Bounding Opacity 

Maps (Table 6.3.1) when using the same number of layers, the latter method produces better 

visuals with fewer layers. This happens because Bounding Opacity Maps give a better 

bounding of the object, there is a depth map for the end splitting points as well, and on top of 

that if the hybrid split is used better renderings are obtained with even fewer layers. 

               Scene FPS 

Layers Trees Grass Dense grass 

4 73.41 61.18 49.80 

8 67.53 55.13 43.61 

16 58.91 46.96 34.66 

32 41.88 31.93 26.80 
 

Table 6.3.1 The variance between the number of layers used and the performance measured in FPS, for 

Bounding Opacity Maps. 

An overall comparison between the three algorithms implemented in this thesis is show in 

Figure 6.3.1. It can be seen that for a larger number of layers the Bounding Opacity Maps 

method tends to have the same performance as Deep Opacity Maps, because the extra render 

pass, computing the end splitting points, becomes computationally insignificant. 
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Figure 6.3.1 Plot generated using gnuplot. The variance between the number of layers and the FPS for Opacity 

Shadow Maps (red), Deep Opacity Maps (green) and Bounding Opacity Maps (blue). Even though Deep Opacity 

Maps have better performance than Bounding Opacity Maps, the latter method produces better visuals with 

fewer layers. 

 

7. Future work 
 

In this section various approaches that try to fix the limitations presented in Section 5.4 are 

proposed.  

Using a different split ratio for each individual ray can solve the fact that for the current 

version there is only one splitting function for the whole scene, causing incorrect renderings 

when multiple objects with different densities are present. This can be done by creating a 

splitting texture (Figure 7.1.b), which will store the split ratio for each individual ray in a 

different pixel. 

A straight forward way to produce such a texture is by using the sum of absolute differences 

method of splitting on individual pixels, or regions (Figure 7.1.c), rather than on whole 

images.  
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Figure 7.1 Picture created with paint.net. Estimate of how the splitting texture would look for individual pixels 

(b) and for regions (c) for some given layers (a). A dark color in the splitting texture (b) corresponds to a linear 

split while a bright one represents a more logarithmic split for the corresponding ray / pixel. 

However a disadvantage of splitting on individual rays is that in order for each splitting ratio 

to always be up-to-date it would have to be recomputed every time a translucent object moves 

or the light changes its position. These events occur quite frequently unlike the ones from the 

global splitting function which took place only when an object changed its density or objects 

with new densities were brought into the light’s perspective. Because of this the splitting 

texture would have to be computed on a frame by frame basis. 

Unfortunately this would not be possible for the current implementation because recomputing 

the global splitting function already represents a bottleneck causing the application to have 

only interactive performance when such a task is performed. Furthermore, adding another 

texture read and more importantly a texture write, necessarily for updating the splitting 

texture, would only result in a decrease in performance.  

Luckily because only local information is needed from the layers, the image processing step 

does not have to be done on the CPU and so no costly texture reads or writes are necessary. 

The splitting texture can be computed on the GPU by adding a new render pass built like a 

post-processing shader [JRP95], were both the input and the output are images and fragments 

from the fragment program represent a pixel in the image space.  

For the splitting texture problem the input images are render textures obtained when using a 

predefined splitting ratio, having values from 0.0 to 1.0 using a 0.1 step. The output for each 

fragment is the optimal sum of absolute differences and the corresponding optimal splitting 

value found so far, encoded in two different texture channels. Because finding an optional 

split ratio takes 11 frames, the number of values from 0.0 to 1.0 using a 0.1 step, two copies 

of the render textures should be kept: one used for rendering and the other one for finding the 

future best split ratio. Once 11 frames have passed the opacity layers used for rendering can 

be recomputed so that they are determined by the newly found optimal split texture, and the 

process of finding the optimal split can start once more (Algorithm 7.1).  
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1. init: 

2.   split_ratio := 0.0 

3.   best_split_texture := 0.0 

4.   geometry := load_scene('scene_file.txt') 

 

5. render_loop: 

6.   start_depth_map := render_pass(geometry) 

7.   end_depth_map := render_pass(geometry) 

8.   [backup_render_textures, split_texture] := 

render_pass(split_ratio, split_texture, start_depth_map, 

end_depth_map, geometry) 

9.   render_textures := render_pass(best_split_texture, 

start_depth_map, end_depth_map, geometry) 

10.  render_scene(render_textures, best_split_texture, 

start_depth_map, end_depth_map, geometry) 

11.  split_ratio := split_ratio + 0.1 

12.  IF split_ratio = 1.1 

13.    split_ratio := 0.0 

14.    best_split_texture := split_texture 

15.  END 

 

Algorithm 7.1 Extending Bounding Opacity Maps to support splitting textures. The individual splitting ratios, 

defined on line 3, are updated every 11 frames (line 12) so there is no need for a needs_recompute function. 

Because the splitting ratios are permanently updated the effects that happen when using the predefined split 

ratios, between 0.0 and 1.0 (line 11), must not be rendered, so another set of render textures is used (line 8). This 

algorithm should have a real-time performance because the best splitting ratios are computed on the GPU and 

not on the CPU (line 8). 

Although adding another render pass to compute the splitting texture will probably result in a 

decrease in performance this will also solve the rendering inconsistencies for scenes having 

object with different density levels. Furthermore, because the individual splitting ratios will 

be permanently updated on the GPU there will be no CPU bottleneck when the scene will be 

updated and eligibly the application will run in real-time. 

The last limitation found for the splitting method is that it doesn’t compute the optimal 

number of layers, but only the optimal splitting ratio. Because as stated in Section 5.3.3 it is 

hard to determine a ratio between the rendering quality and the performance, choosing the 

optimal number of layers could be done only by taking into account the performance which 

has to be real-time, i.e. more than 30 FPS. In order to do this a benchmarking fly-through 

scene in which the number of layers is increased as long as it keeps the application real-time 

could be used, similar to the one from Half Life 2: Lost Coast Benchmark [HL2LC05]. 

Because each new layer adds new details the maximum number of layers is actually the 

optimal number of layers which keeps the application real-time on the hardware configuration 

the scene was run. 

Although the current implementation works with foliage, like trees and grass, and hair, 

support for other translucent objects, like clouds and smoke, could also be added as another 

possible future improvement. The reason why these types of translucent object are not 

currently supported is because they are usually rendered using volumetric rendering which is 
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yet to be implemented in Crystal Space. With the aid of volumetric rendering clouds could be 

simulated using metaballs, as describe in "A Simple, Efficient Method for Realistic 

Animation of Clouds" [DKY00]. The metaballs rendering consists of approximating the cloud 

volume with a set of spheres which are then used to test the intersection with rays shoot from 

the light’s direction. However, this cannot be achieved with a regular, non-volumetric 

approach because the spheres would be rendered only as surfaces and not as volumes (Figure 

7.2).  

 

Figure 7.2 Picture taken from Crystal Space. Using non volumetric rendering techniques produces incorrect 

renderings because the metaballs spheres are rendered as surfaces and not volumes, both when rendering the 

final scene and when rendering to texture. 

 

8. Conclusions 
 

Translucent objects, like foliage or hair, need to cast shadows on themselves in order to 

produce realistic renderings. 

The first method that produces realistic self-shadows in real-time for such translucent object 

appeared in 2000 and it is called Opacity Shadow Maps. The main disadvantage of this 

algorithm is that it is artifact free only when a lot of opacity maps are used, causing the 

application to exceed the real-time limits. 

Deep Opacity Maps produce quality renderings with just a few layers by aligning the opacity 

maps with the start shape of the geometry as seen from the light’s perspective. However, 

because no information regarding the end position or shape of the objects is provided this 

method cannot be used on scenes having objects of different sizes. 
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Bounding Opacity Maps, a novel approach proposed in this thesis, fixes the limitations of 

Deep Opacity Maps by specify a bounding volume, via two depth maps, for all translucent 

objects in the scene. Moreover, various splitting schemes, such as linear or logarithmic, have 

been tried in order to better determine the splitting positions. In the end a hybrid splitting 

function that is more linear for sparse object and more logarithmic for dense ones was 

considered the best choice.  

Individual split functions and real-time updates are still to be added, as well as support for 

finding the optimal number of splitting points and support for rendering other types of 

translucent objects, such as clouds or smoke.   
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Appendix 
 

Section 1 

Excerpt from the shader generating 4 opacity maps in one texture by using all 4 available 

channels. 

float value = surface.a; 

value = value * (surface.a != 1); 

 

int i; 

for (i = 0 ; i <= numSplits ; i ++) 

if (passColor[i] > positionCamera.z) 

break; 

 

int index = i % 4; 

float4 color = value; 

color = color * float4(index < 1, index < 2, index < 3, 1); 

 

output = color; 

 

Section 2 

Excerpt from the shader generating the final opacity function by adding information from all 

precedent render textures. 

float previousMap = 0, nextMap = 0; 

 

int prevIndex = min((i / 4), numSplits); 

float2 prevPos = getPosition(prevIndex); 

 

for (int j = 0 ; j < prevIndex ; j ++) 

previousMap += getMapValue(4 * (j + 1) - 1, prevPos); 

 

int nextIndex = min((i + 1) / 4, numSplits); 

float2 nextPos = getPosition(nextIndex); 

 

nextMap = previousMap; 

for (int j = prevIndex ; j < nextIndex ; j ++) 

nextMap += getMapValue(4 * (j + 1) - 1, nextPos); 

 

previousMap += getMapValue(i, prevPos); 

nextMap += getMapValue(i + 1, nextPos);    

 

inLight = lerp(previousMap, nextMap, (float) (viewPos.z - 

 previousSplit) / (nextSplit - previousSplit) ); 

 

inLight = inLight * (i != numSplits) + previousMap * (i == 

 numSplits); 

inLight = exp(-1.0 * inLight); 

 

return inLight; 
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Section 3 

Excerpt from the shader accessing and writing only to valid render targets, depending on the 

number of render targets actually supported by the video card. 

<![CDATA[           

  struct fragmentOutput 

  { 

    float4 Color0 : COLOR0; 

]]>             

<?if vars."mrt".int &gt; 1?> 

  <![CDATA[           

    float4 Color1 : COLOR1; 

    float4 Color2 : COLOR2; 

    float4 Color3 : COLOR3; 

  ]]>             

<?if vars."mrt".int &gt; 4?> 

  <![CDATA[           

    float4 Color4 : COLOR4; 

    float4 Color5 : COLOR5; 

    float4 Color6 : COLOR6; 

    float4 Color7 : COLOR7; 

  ]]> 

<?endif?> 

<?endif?> 

<![CDATA[                

    }; 

]]> 

<![CDATA[   

  float value = surface.a; 

  value = value * (surface.a != 1); 

 

  int i; 

  for (i = 0 ; i <= numSplits ; i ++) 

    if (passColor[i] > IN.position_camera.z) 

      break; 

 

  int index = i % 4; 

  float4 color = value; 

  color = color * float4(index < 1, index < 2, index < 3, 1); 

 

  // write in the correct render target 

  int renderTarget = (i / 4) % mrt; 

 

  output.Color0 = color * (renderTarget == 0); 

]]>             

<?if vars."mrt".int &gt; 1?> 

<![CDATA[                       

  output.Color1 = color * (renderTarget == 1); 

  output.Color2 = color * (renderTarget == 2); 

  output.Color3 = color * (renderTarget == 3); 

]]>             

<?if vars."mrt".int &gt; 4?> 

<![CDATA[                       

  output.Color4 = color * (renderTarget == 4); 

  output.Color5 = color * (renderTarget == 5); 

  output.Color6 = color * (renderTarget == 6); 

  output.Color7 = color * (renderTarget == 7); 

]]> 

<?endif?> 
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<?endif?> 

<![CDATA[      

  return output; 

} 

]]> 

 

Section 4 

Code from [BP04], for doing a brute force percentage-closer filter o 4x4 texel. 

float3 offset_lookup(sampler2D map, 

                     float4 loc, 

                     float2 offset) 

{ 

  return tex2Dproj(map, float4(loc.xy + offset * texmapscale * loc.w, 

    loc.z, loc.w)); 

} 

 

float sum = 0; 

float x, y; 

 

for (y = -1.5; y <= 1.5; y += 1.0) 

  for (x = -1.5; x <= 1.5; x += 1.0) 

    sum += offset_lookup(shadowmap, shadowCoord, float2(x, y)); 

 

Section 5 

Excerpt from the second rendering pass, generating the depth opacity maps using multiple 

targets. Instead of storing information just between two splitting points, the layers save 

information from all previous splitting points. 

<![CDATA[   

  output.Color0 = color * (renderTarget == 0); 

]]>             

<?if vars."mrt".int &gt; 1?> 

<![CDATA[                       

  output.Color1 = color * (renderTarget == 1); 

  output.Color2 = color * (renderTarget == 2); 

  output.Color3 = color * (renderTarget == 3); 

]]>             

<?if vars."mrt".int &gt; 4?> 

<![CDATA[                       

  output.Color4 = color * (renderTarget == 4); 

  output.Color5 = color * (renderTarget == 5); 

  output.Color6 = color * (renderTarget == 6); 

  output.Color7 = color * (renderTarget == 7); 

]]> 

<?endif?> 

<?endif?> 

<![CDATA[      

  return output; 

} 

]]> 

The above section is replaced without introducing any additional computational cost by: 
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<![CDATA[   

  output.Color0 = color * (renderTarget <= 0); 

]]>             

<?if vars."mrt".int &gt; 1?> 

<![CDATA[                       

  output.Color1 = color * (renderTarget <= 1); 

  output.Color2 = color * (renderTarget <= 2); 

  output.Color3 = color * (renderTarget <= 3); 

]]>             

<?if vars."mrt".int &gt; 4?> 

<![CDATA[                       

  output.Color4 = color * (renderTarget <= 4); 

  output.Color5 = color * (renderTarget <= 5); 

  output.Color6 = color * (renderTarget <= 6); 

  output.Color7 = color * (renderTarget <= 7); 

]]> 

<?endif?> 

<?endif?> 

<![CDATA[      

  return output; 

} 

]]> 

 

Section 6 

Excerpt from the third rendering pass from Bounding Opacity Maps. The splitting points are 

determined by a linear interpolation between the values read from the two depth maps. 

<![CDATA[                

  fragmentOutput main (vertex2fragment IN, 

    uniform sampler2D TexDiffuse, 

    uniform sampler2D DepthStartMap, 

    uniform sampler2D DepthEndMap) 

  { 

    fragmentOutput output; 

    float4 surface = tex2D (TexDiffuse, IN.TexCoord); 

    float value = surface.a; 

 

    // compute the projection for the depthStart map               

    float3 shadowMapCoordsBiased = 

 (float3(0.5)*IN.shadowMapCoordsProj.xyz) + float3(0.5); 

    float2 position = shadowMapCoordsBiased.xy; 

 

    float compareDepth = (1 - shadowMapCoordsBiased.z) ; 

    float depthStart = tex2D(DepthStartMap, position).x; 

    float depthEnd = tex2D(DepthEndMap, position).x; 

 

    int layer; 

    layer = min( ( (compareDepth - depthStart) / (1 - depthEnd - 

 depthStart) ) * (numSplits - 1), numSplits - 1); 

 

    ... 

 

    return output; 

  } 

]]> 
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Section 7 

Excerpt from the initialization stage where the lookup texture encoding the logarithmic 

splitting is computed. 

double end = textureSize - 1; 

double range = (int)(log(end - 1.0)/log(2.0)); 

double start = end - range; 

 

data[0] = 0; 

for (int i = 4 ; i < 4 * textureSize ; i += 4) 

{ 

  data[i] = (unsigned char)csMin( ( (log(pow(2.0, start) * (i / 4.0)) 

    / log(2.0) - start) * end / range ) , end) * 255 / end; 

} 

 

Section 8 

Excerpt from the third rendering pass, which uses only a lookup texture instead of numerous 

arithmetic operations. 

<![CDATA[                

  fragmentOutput main (vertex2fragment IN, 

    uniform sampler2D TexDiffuse, 

    uniform sampler2D DepthStartMap, 

    uniform sampler2D DepthEndMap, 

    uniform sampler2D SplitFunc) 

  { 

    fragmentOutput output; 

    float4 surface = tex2D (TexDiffuse, IN.TexCoord); 

    float value = surface.a; 

 

    // compute the projection for the depthStart map               

    float3 shadowMapCoordsBiased = 

 (float3(0.5)*IN.shadowMapCoordsProj.xyz) + float3(0.5); 

    float2 position = shadowMapCoordsBiased.xy; 

 

    float compareDepth = (1 - shadowMapCoordsBiased.z) ; 

    float depthStart = tex2D(DepthStartMap, position).x; 

    float depthEnd = tex2D(DepthEndMap, position).x; 

 

    int layer; 

    layer = min( tex2D( SplitFunc, float2( min( (compareDepth - 

 depthStart) / (1 - depthEnd - depthStart) , 0.9999 ) , 0 ) ).x 

 * (numSplits - 1), numSplits - 1);               

 

    ... 

 

    return output; 

  } 

]]> 
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Section 9 

Excerpt from the initialization stage where the lookup texture encoding the hybrid splitting is 

computed. Values near 0 for the logValue variable correspond to linear splitting, while values 

close to 1 yield a logarithmic distribution of the layers. 

double end = textureSize - 1; 

double range = (int)(log(end - 1.0)/log(2.0)); 

double start = end - range; 

 

data[0] = 0; 

for (int i = 4 ; i < 4 * textureSize ; i += 4) 

{ 

  data[i] = (unsigned char)(csMin( (1 - logValue) * i / 4 + logValue 

    * ( (log(pow(2.0, start) * (i / 4.0)) / log(2.0) - start) * end / 

    range ) , end) * 255 / end); 

} 

 

Section 10 

Excerpt from the lighting shader that applies the diffuse term from the Blinn-Phong shading 

model for opaque objects and the self-shadowing term for translucent ones. 

LightSpaceWorld lightSpace; 

lightSpace.Init (i, positionW); 

 

shadow.Init (l, shadowMapCoords[l], lightDir[l].w); 

 

float3 lightDiffuse = lightProps.colorDiffuse[i]; 

 

half shadowFactor = shadow.GetVisibility(); 

Light light = GetCurrentLight (lightSpace, i); 

float4 lightAttenuationVec = lightProps.attenuationVec[i]; 

float3 d, s; 

ComputeLight (lightSpace, light, myEyeToSurf, normal, shininess, 

  lightDiffuse, lightProps.colorSpecular[i], 

  lightAttenuationVec, shadowFactor, d, s); 

 

// translucent objects do not have diffuse light 

diffuseColor += shadowFactor * (surface.a != 1) + d * (surface.a == 

1); 

specularColor += s; 

 

Section 11 

This section of the Appendix contains results regarding the way the split ratio modifies for 

objects with different opacities and different number of layers. The two splitting method 

tested at a 512x512 layers’ resolution were sum of absolute differences and cross-correlation 

coefficient. 
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Split ratio (Table A.11.1) computed for a scene composed of a single tree viewed from above 

(Figure A.11.1). 

 

Figure A.11.1 Picture taken from Crystal Space  

 

                             Layers 

Split method 1 16 32 

Sum of absolute differences 1.0 0.4 0.2 

Correlation coefficient 0.7 0.2 0.2 
 

Table A.11.1 Split ratio variation for the scene in Figure A.11.1 
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Split ratio (Table A.11.2) computed for a scene composed of a single tree viewed from 

sideways (Figure A.11.2). 

 

Figure A.11.2 Picture taken from Crystal Space  

 

                             Layers 

Split method 1 16 32 

Sum of absolute differences 1.0 0.6 0.2 

Cross-correlation 0.7 0.3 0.1 
 

Table A.11.2 Split ratio variation for the scene in Figure A.11.2 

  



Real-time volumetric shadows for dynamic rendering Alexandru Voicu 

 

62  

 

Split ratio (Table A.11.3) computed for a scene composed of a grass model viewed from 

above (Figure A.11.3). 

 

Figure A.11.3 Picture taken from Crystal Space  

 

                             Layers 

Split method 1 16 32 

Sum of absolute differences 1.0 0.9 1.0 

Cross-correlation 0.7 0.3 0.2 
 

Table A.11.3 Split ratio variation for the scene in Figure A.11.3 
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Split ratio (Table A.11.4) computed for a scene composed of a grass model viewed from 

sideways (Figure A.11.4). 

 

Figure A.11.4 Picture taken from Crystal Space  

 

                             Layers 

Split method 1 16 32 

Sum of absolute differences 1.0 1.0 1.0 

Cross-correlation 1.0 0.8 0.7 
 

Table A.11.4 Split ratio variation for the scene in Figure A.11.4 
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Split ratio (Table A.11.5) computed for a scene composed of a dense grass model viewed from 

above (Figure A.11.5). 

 

Figure A.11.5 Picture taken from Crystal Space  

 

                             Layers 

Split method 1 16 32 

Sum of absolute differences 1.0 1.0 1.0 

Cross-correlation 0.8 0.4 0.3 
 

Table A.11.5 Split ratio variation for the scene in Figure A.11.5 
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Split ratio (Table A.11.6) computed for a scene composed of a dense grass model viewed from 

sideways (Figure A.11.6). 

 

Figure A.11.6 Picture taken from Crystal Space  

 

                             Layers 

Split method 1 16 32 

Sum of absolute differences 1.0 1.0 1.0 

Cross-correlation 1.0 0.9 0.8 
 

Table A.11.6 Split ratio variation for the scene in Figure A.11.6 
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Section 12 

Excerpt from the code computing the cross-correlation coefficient using only one iteration 

over the input images: 

 

// compute correlation coefficient: 

double *means = new double[4 * persist.mrt]; 

double *squareSum = new double[4 * persist.mrt]; 

double *xy = new double[4 * persist.mrt]; 

double *correlations = new double[4 * persist.mrt]; 

 

for (int i = 0 ; i < 4 * persist.mrt ; i ++) 

{ 

  means[i] = 0; 

  squareSum[i] = 0; 

  xy[i] = 0; 

} 

 

for (int layer = 0 ; layer < persist.mrt ; layer ++) 

  for (int i = 0 ; i < persist.shadowMapRes ; i ++) 

    for (int j = 0 ; j < persist.shadowMapRes ; j ++) 

      for (int k = 0 ; k < 4 ; k ++) 

      { 

        uint8 x = data[layer][4 * (i + j * persist.shadowMapRes)+ k]; 

                     

        means[4 * layer + k] += x; 

        squareSum[4 * layer + k] += (x * x); 

 

        if (4 * layer + k < 4 * persist.mrt - 1) 

        { 

          uint8 y = data[layer + (k + 1) / 4] 

            [4 * (i + j * persist.shadowMapRes) + (k + 1) % 4]; 

          xy[4 * layer + k] += (x * y); 

        } 

      } 

 

int n = persist.shadowMapRes * persist.shadowMapRes; 

for (int i = 0 ; i < 4 * persist.mrt ; i ++) 

  means[i] /= n; 

 

for (int i = 0 ; i < 4 * persist.mrt - 1 ; i ++) 

{ 

  correlations[i] = (xy[i] - means[i] * means[i + 1] * n) / 

    sqrt( (squareSum[i] - means[i] * means[i] * n) *  

    (squareSum[i + 1] - means[i + 1] * means[i + 1] * n)); 

} 

 


